A thin conducting wire is bent into a circular loop of radius r and placed in a time dependent magnetic field of magnetic induction.
$$\overrightarrow {\bf{B}} \left( t \right) = {B_0}{e^{ - \alpha t}}{{\bf{\hat e}}_z},\,\,\left( {{B_0} > 0{\text{ and }}\alpha > 0} \right)$$
such that, the plane of the loop is perpendicular to $$\overrightarrow {\bf{B}} \left( t \right).$$ Then the induced emf in the loop is

A thin conducting wire is bent into a circular loop of radius r and placed in a time dependent magnetic field of magnetic induction.
$$\overrightarrow {\bf{B}} \left( t \right) = {B_0}{e^{ - \alpha t}}{{\bf{\hat e}}_z},\,\,\left( {{B_0} > 0{\text{ and }}\alpha > 0} \right)$$
such that, the plane of the loop is perpendicular to $$\overrightarrow {\bf{B}} \left( t \right).$$ Then the induced emf in the loop is Correct Answer πr<sup>2</sup> αB<sub>0</sub> e<sup>-αt</sup>

Related Questions

A conducting loop L of surface area S is moving with a velocity $$\overrightarrow {\bf{v}} $$ in a magnetic field $$\overrightarrow {\bf{B}} \left( {\overrightarrow {\bf{r}} ,\,t} \right) = {B_0}{t^2},\,{B_0}$$     is a positive constant of suitable dimensions. The emfinduced Vemf in the loop is given by
An atom with net magnetic moment $$\overrightarrow \mu $$ and net angular momentum $$\overrightarrow {\bf{L}} \left( {\overrightarrow \mu = \gamma \overrightarrow {\bf{L}} } \right)$$   is kept in a uniform magnetic induction $$\overrightarrow {\bf{B}} = {B_0}{\bf{\hat k}}.$$  The magnetic moment $$\overrightarrow \mu \left( { = {\mu _x}} \right)$$  is
The primitive translation vectors of the body centred cubic lattice are $$\overrightarrow {\bf{a}} = \frac{a}{2}\left( {{\bf{\hat x}} + {\bf{\hat y}} - {\bf{\hat z}}} \right),\,\overrightarrow {\bf{b}} = \frac{a}{2}\left( { - {\bf{\hat x}} + {\bf{\hat y}} + {\bf{\hat z}}} \right)$$        and $$\overrightarrow {\bf{c}} = \frac{a}{2}\left( {{\bf{\hat x}} - {\bf{\hat y}} + {\bf{\hat z}}} \right)$$    . The primitive translation vectors $$\overrightarrow {\bf{A}} ,\,\overrightarrow {\bf{B}} $$  and $$\overrightarrow {\bf{C}} $$ of the reciprocal lattice are
For two non-zero vectors $$\overrightarrow {\text{A}} $$ and $$\overrightarrow {\text{B}} $$, if $$\overrightarrow {\text{A}} $$ + $$\overrightarrow {\text{B}} $$ is perpendicular to $$\overrightarrow {\text{A}} $$ - $$\overrightarrow {\text{B}} $$ then,