In a cubic system with cell edge a, two phonons with wave vectors $${\overrightarrow {\bf{q}} _1}$$ and $${\overrightarrow {\bf{q}} _2}$$ collide and produce a third phonon with a wave. vector $${\overrightarrow {\bf{q}} _3}$$ such that $${\overrightarrow {\bf{q}} _1} + {\overrightarrow {\bf{q}} _2} = {\overrightarrow {\bf{q}} _3} + \overrightarrow {\bf{R}} $$    where, $$\overrightarrow {\bf{R}} $$ is a lattice vector. Such a collision process will lead to(a)

In a cubic system with cell edge a, two phonons with wave vectors $${\overrightarrow {\bf{q}} _1}$$ and $${\overrightarrow {\bf{q}} _2}$$ collide and produce a third phonon with a wave. vector $${\overrightarrow {\bf{q}} _3}$$ such that $${\overrightarrow {\bf{q}} _1} + {\overrightarrow {\bf{q}} _2} = {\overrightarrow {\bf{q}} _3} + \overrightarrow {\bf{R}} $$    where, $$\overrightarrow {\bf{R}} $$ is a lattice vector. Such a collision process will lead to(a) Correct Answer finite thermal resistance

Related Questions

The primitive translation vectors of the body centred cubic lattice are $$\overrightarrow {\bf{a}} = \frac{a}{2}\left( {{\bf{\hat x}} + {\bf{\hat y}} - {\bf{\hat z}}} \right),\,\overrightarrow {\bf{b}} = \frac{a}{2}\left( { - {\bf{\hat x}} + {\bf{\hat y}} + {\bf{\hat z}}} \right)$$        and $$\overrightarrow {\bf{c}} = \frac{a}{2}\left( {{\bf{\hat x}} - {\bf{\hat y}} + {\bf{\hat z}}} \right)$$    . The primitive translation vectors $$\overrightarrow {\bf{A}} ,\,\overrightarrow {\bf{B}} $$  and $$\overrightarrow {\bf{C}} $$ of the reciprocal lattice are
For two non-zero vectors $$\overrightarrow {\text{A}} $$ and $$\overrightarrow {\text{B}} $$, if $$\overrightarrow {\text{A}} $$ + $$\overrightarrow {\text{B}} $$ is perpendicular to $$\overrightarrow {\text{A}} $$ - $$\overrightarrow {\text{B}} $$ then,
In a cubic crystal, atoms of mass M1 lie on one set of planes and atoms of mass M2 lie on planes interleaved between those of the first set. If C is the forte constant between nearest neighbour planes, the frequency of lattice vibrations for the optical phonon branch with wave vector k = 0 is
An atom with net magnetic moment $$\overrightarrow \mu $$ and net angular momentum $$\overrightarrow {\bf{L}} \left( {\overrightarrow \mu = \gamma \overrightarrow {\bf{L}} } \right)$$   is kept in a uniform magnetic induction $$\overrightarrow {\bf{B}} = {B_0}{\bf{\hat k}}.$$  The magnetic moment $$\overrightarrow \mu \left( { = {\mu _x}} \right)$$  is