An atom with net magnetic moment $$\overrightarrow \mu $$ and net angular momentum $$\overrightarrow {\bf{L}} \left( {\overrightarrow \mu = \gamma \overrightarrow {\bf{L}} } \right)$$   is kept in a uniform magnetic induction $$\overrightarrow {\bf{B}} = {B_0}{\bf{\hat k}}.$$  The magnetic moment $$\overrightarrow \mu \left( { = {\mu _x}} \right)$$  is

An atom with net magnetic moment $$\overrightarrow \mu $$ and net angular momentum $$\overrightarrow {\bf{L}} \left( {\overrightarrow \mu = \gamma \overrightarrow {\bf{L}} } \right)$$   is kept in a uniform magnetic induction $$\overrightarrow {\bf{B}} = {B_0}{\bf{\hat k}}.$$  The magnetic moment $$\overrightarrow \mu \left( { = {\mu _x}} \right)$$  is Correct Answer $$\frac{{{d^2}{\mu _x}}}{{d{t^2}}} + {\gamma ^2}B_0^2{\mu _x} = 0$$

Related Questions

In a two-electron atomic system having orbital and spin angular momenta $${l_1}{l_2}$$  and $${s_1}{s_2}$$  respectively, the coupling strengths are defined as $${\Gamma _{{l_1}{l_2}}},\,{\Gamma _{{s_1}{s_2}}},\,{\Gamma _{{l_1}{s_1}}},\,{\Gamma _{{l_2}{s_2}}},\,{\Gamma _{{l_1}{l_2}}}$$      and $${\Gamma _{{l_2}{s_1}}}.$$  For the jj coupling. scheme to be applicable, the coupling strengths must satisfy the condition
A rigid body is rotating about its centre of mass; fixed at origin with an angular velocity $$\overrightarrow \omega $$ and angular acceleration $$\overrightarrow \alpha $$. If the torque acting on it is $$\overrightarrow \tau $$ and its angular momentum is $$\overrightarrow {\bf{L}} $$, then the rate of change of its kinetic energy is
The primitive translation vectors of the body centred cubic lattice are $$\overrightarrow {\bf{a}} = \frac{a}{2}\left( {{\bf{\hat x}} + {\bf{\hat y}} - {\bf{\hat z}}} \right),\,\overrightarrow {\bf{b}} = \frac{a}{2}\left( { - {\bf{\hat x}} + {\bf{\hat y}} + {\bf{\hat z}}} \right)$$        and $$\overrightarrow {\bf{c}} = \frac{a}{2}\left( {{\bf{\hat x}} - {\bf{\hat y}} + {\bf{\hat z}}} \right)$$    . The primitive translation vectors $$\overrightarrow {\bf{A}} ,\,\overrightarrow {\bf{B}} $$  and $$\overrightarrow {\bf{C}} $$ of the reciprocal lattice are