The Hamiltonian of a particle is given by $$H = \frac{{{p^2}}}{{2m}} + V\left( {\left| {\overrightarrow {\bf{r}} } \right|} \right) + \phi \left( { + \left| {\overrightarrow {\bf{r}} } \right|} \right)\overrightarrow {\bf{L}} .\overrightarrow {\bf{S}} ,$$        where $$\overrightarrow {\bf{S}} $$ is the spin, $$V\left( {\left| {\overrightarrow {\bf{r}} } \right|} \right)$$  and $$\phi \left( {\left| {\overrightarrow {\bf{r}} } \right|} \right)$$  are potential functions and $$\overrightarrow {\bf{L}} \left( { = \overrightarrow {\bf{r}} \times \overrightarrow {\bf{p}} } \right)$$   is the angular momentum. The Hamiltonian does not commute with

The Hamiltonian of a particle is given by $$H = \frac{{{p^2}}}{{2m}} + V\left( {\left| {\overrightarrow {\bf{r}} } \right|} \right) + \phi \left( { + \left| {\overrightarrow {\bf{r}} } \right|} \right)\overrightarrow {\bf{L}} .\overrightarrow {\bf{S}} ,$$        where $$\overrightarrow {\bf{S}} $$ is the spin, $$V\left( {\left| {\overrightarrow {\bf{r}} } \right|} \right)$$  and $$\phi \left( {\left| {\overrightarrow {\bf{r}} } \right|} \right)$$  are potential functions and $$\overrightarrow {\bf{L}} \left( { = \overrightarrow {\bf{r}} \times \overrightarrow {\bf{p}} } \right)$$   is the angular momentum. The Hamiltonian does not commute with Correct Answer $${L_z}$$

Related Questions

A particle of charge q, mass m and linear momentum $$\overrightarrow {\bf{p}} $$ enters an electromagnetic field of vector potential $$\overrightarrow {\bf{A}} $$ and scalar potential $$\phi $$. The Hamiltonian of particle is
A particle of charge q, mass m and linear momentum $$\overrightarrow {\bf{p}} $$ enters an electromagnetic field of vector potential $$\overrightarrow {\bf{A}} $$ and scalar potential $$\phi .$$ The Hamiltonian of the particle is
An atom with net magnetic moment $$\overrightarrow \mu $$ and net angular momentum $$\overrightarrow {\bf{L}} \left( {\overrightarrow \mu = \gamma \overrightarrow {\bf{L}} } \right)$$   is kept in a uniform magnetic induction $$\overrightarrow {\bf{B}} = {B_0}{\bf{\hat k}}.$$  The magnetic moment $$\overrightarrow \mu \left( { = {\mu _x}} \right)$$  is
A rigid body is rotating about its centre of mass; fixed at origin with an angular velocity $$\overrightarrow \omega $$ and angular acceleration $$\overrightarrow \alpha $$. If the torque acting on it is $$\overrightarrow \tau $$ and its angular momentum is $$\overrightarrow {\bf{L}} $$, then the rate of change of its kinetic energy is
Deuteron in its ground state has a total angular momentum J = 1 and a positive parity. The corresponding orbital angular momentum L and spin angular momentum S combinations are