For a vector potential $$\overrightarrow {\bf{A}} ,$$ the divergence of $$\overrightarrow {\bf{A}} $$ is $$\overrightarrow \nabla \cdot \overrightarrow {\bf{A}} = - \frac{{{\mu _0}}}{{4\pi }} \cdot \frac{Q}{{{r^2}}},$$    where Q is a constant of appropriate dimension. The corresponding scalar potential $$\phi \left( {r,\,t} \right)$$  that makes $$\overrightarrow {\bf{A}} $$ and $$\phi $$ Lorentz gauge invariant is

For a vector potential $$\overrightarrow {\bf{A}} ,$$ the divergence of $$\overrightarrow {\bf{A}} $$ is $$\overrightarrow \nabla \cdot \overrightarrow {\bf{A}} = - \frac{{{\mu _0}}}{{4\pi }} \cdot \frac{Q}{{{r^2}}},$$    where Q is a constant of appropriate dimension. The corresponding scalar potential $$\phi \left( {r,\,t} \right)$$  that makes $$\overrightarrow {\bf{A}} $$ and $$\phi $$ Lorentz gauge invariant is Correct Answer $$\frac{1}{{4\pi {\varepsilon _0}}} \cdot \frac{{Qt}}{{{r^2}}}$$

Related Questions

The primitive translation vectors of the body centred cubic lattice are $$\overrightarrow {\bf{a}} = \frac{a}{2}\left( {{\bf{\hat x}} + {\bf{\hat y}} - {\bf{\hat z}}} \right),\,\overrightarrow {\bf{b}} = \frac{a}{2}\left( { - {\bf{\hat x}} + {\bf{\hat y}} + {\bf{\hat z}}} \right)$$        and $$\overrightarrow {\bf{c}} = \frac{a}{2}\left( {{\bf{\hat x}} - {\bf{\hat y}} + {\bf{\hat z}}} \right)$$    . The primitive translation vectors $$\overrightarrow {\bf{A}} ,\,\overrightarrow {\bf{B}} $$  and $$\overrightarrow {\bf{C}} $$ of the reciprocal lattice are