The following Boolean expression $$Y = A \cdot \overline B \cdot \overline C \cdot \overline D + \overline A \cdot B \cdot \overline C \cdot D + \overline A \cdot \overline B \cdot \overline C \cdot D + \overline A \cdot \overline B \cdot \overline C \cdot D + \overline A \cdot B \cdot C \cdot D + A \cdot \overline B \cdot \overline C \cdot D$$                 can be simplified to

The following Boolean expression $$Y = A \cdot \overline B \cdot \overline C \cdot \overline D + \overline A \cdot B \cdot \overline C \cdot D + \overline A \cdot \overline B \cdot \overline C \cdot D + \overline A \cdot \overline B \cdot \overline C \cdot D + \overline A \cdot B \cdot C \cdot D + A \cdot \overline B \cdot \overline C \cdot D$$                 can be simplified to Correct Answer $$A \cdot \overline B \cdot \overline C + \overline A \cdot D$$

Related Questions

Let the average temperatures in Centigrade (C) and Fahrenheit (F) be $$\overline C $$ and $$\overline F $$. If $$\overline C $$ and $$\overline F $$ are related to $$F = \frac{9}{2}C + 32,$$   then $$\overline F $$ and $$\overline C $$ have the relation