ABCD is a parallelogram and the diagonals \(\overline {AC} \) and \(\overline {BD} \) intersect at 'O'. If E, F, G and H are the mid-point of \(\overline {AO}\), \(\overline {DO}\), \(\overline {CO}\) and \(\overline {BO} \) respectively, then what is the ratio of (EF + FG + GH + HE) and (AD + DC + CB + BA)?

ABCD is a parallelogram and the diagonals \(\overline {AC} \) and \(\overline {BD} \) intersect at 'O'. If E, F, G and H are the mid-point of \(\overline {AO}\), \(\overline {DO}\), \(\overline {CO}\) and \(\overline {BO} \) respectively, then what is the ratio of (EF + FG + GH + HE) and (AD + DC + CB + BA)? Correct Answer 1 ∶ 2

Given:

ABCD is a parallelogram

AE = EO

DF = FO

CG = GO

BH = HO

Concept:

The midpoint theorem: The line segment in a triangle joining the midpoint of two sides of the triangle is said to be parallel to its third side and is also half of the length of the third side.

Calculation:

[ alt="F2 Vikash Madhuri 17.03.2021 D3" src="//storage.googleapis.com/tb-img/production/21/03/F2_Vikash_Madhuri_17.03.2021_D3.png" style="width: 235px; height: 165px;">

EH/AB = 1/2      ---- (1)

EF/AD = 1/2      ---- (2)

FG/DC = 1/2      ---- (3)

HG/BC = 1/2      ---- (4)

From equation (1), (2), (3) and (4) 

(EF + FG + GH + HE) ∶ (AD + DC + CB + BA) = 1 ∶ 2 

The correct option is 1 i.e. 1 ∶ 2 

Related Questions

Let the average temperatures in Centigrade (C) and Fahrenheit (F) be $$\overline C $$ and $$\overline F $$. If $$\overline C $$ and $$\overline F $$ are related to $$F = \frac{9}{2}C + 32,$$   then $$\overline F $$ and $$\overline C $$ have the relation
In parallelogram PQRS, ∠P = 45°, PR and QS are the diagonals of the parallelogram. The mid-point QR is O. OX and OY are perpendicular to PQ and QR respectively. If OX = 8 cm and OY = 12 cm, then what is the area of the parallelogram PQRS?