In the given figure, PQRS is a parallelogram, a length and a breadth of the parallelogram are 80 cm and 25 cm respectively. If h1 + h2 = 84 cm, where h1 & h2 are the perpendiculars on the length and breadth of the parallelogram, then find the area of the parallelogram.

In the given figure, PQRS is a parallelogram, a length and a breadth of the parallelogram are 80 cm and 25 cm respectively. If h1 + h2 = 84 cm, where h1 & h2 are the perpendiculars on the length and breadth of the parallelogram, then find the area of the parallelogram. Correct Answer 1600 cm<span style="position: relative; line-height: 0; vertical-align: baseline; top: -0.5em;font-size:10.5px;">2</span>

Given:

PQRS is a parallelogram,

Length = 80 cm & Breadth = 25 cm

h1 + h2 = 84 cm, where h1 & h2 are the perpendiculars on the length and breadth of the parallelogram.

Formula used:

Area of parallelogram = Base × Height

Calculations:

[ alt="F1 Himanshu Aggarwal Anil 09.12.20 D6" src="//storage.googleapis.com/tb-img/production/20/12/F1_Himanshu%20Aggarwal_Anil_09.12.20_D6.png" style="width: 253px; height: 149px;">

Area of parallelogram = Base × Height

⇒ PQ × h1 = PS × h2

⇒ 80 × h1 = 25 × h2

⇒ h1/h2 = 5/16

Let h1 & h2 be 5x & 16x respectively.

h1 + h2 = 84 cm

⇒ 5x + 16x = 84

⇒ x = 4

⇒ h1 = 5x 

⇒ h1 = 20 cm

⇒ h2 = 64 cm

Now,

Area of parallelogram = Base × Height

⇒ PQ × h1

⇒ 80 × 20

⇒ 1600

∴ The area of the parallelogram is 1600 cm2.

Related Questions

Consider the 5 × 5 matrix \[{\text{A}} = \left[ {\begin{array}{*{20}{c}} 1&2&3&4&5 \\ 5&1&2&3&4 \\ 4&5&1&2&3 \\ 3&4&5&1&2 \\ 2&3&4&5&1 \end{array}} \right
In parallelogram PQRS, ∠P = 45°, PR and QS are the diagonals of the parallelogram. The mid-point QR is O. OX and OY are perpendicular to PQ and QR respectively. If OX = 8 cm and OY = 12 cm, then what is the area of the parallelogram PQRS?