Given $$\overrightarrow {\text{F}} = \left( {{{\text{x}}^2} - 2{\text{y}}} \right)\overrightarrow {\text{i}} - 4{\text{yz}}\overrightarrow {\text{j}} + 4{\text{x}}{{\text{z}}^2}\overrightarrow {\text{k}} ,$$       the value of the line integral $$\int\limits_{\text{c}} {\overrightarrow {\text{F}} \cdot d\overrightarrow l } $$   along the straight line c from (0, 0, 0) to (1,1,1) is

Given $$\overrightarrow {\text{F}} = \left( {{{\text{x}}^2} - 2{\text{y}}} \right)\overrightarrow {\text{i}} - 4{\text{yz}}\overrightarrow {\text{j}} + 4{\text{x}}{{\text{z}}^2}\overrightarrow {\text{k}} ,$$       the value of the line integral $$\int\limits_{\text{c}} {\overrightarrow {\text{F}} \cdot d\overrightarrow l } $$   along the straight line c from (0, 0, 0) to (1,1,1) is Correct Answer -1

Related Questions

The primitive translation vectors of the body centred cubic lattice are $$\overrightarrow {\bf{a}} = \frac{a}{2}\left( {{\bf{\hat x}} + {\bf{\hat y}} - {\bf{\hat z}}} \right),\,\overrightarrow {\bf{b}} = \frac{a}{2}\left( { - {\bf{\hat x}} + {\bf{\hat y}} + {\bf{\hat z}}} \right)$$        and $$\overrightarrow {\bf{c}} = \frac{a}{2}\left( {{\bf{\hat x}} - {\bf{\hat y}} + {\bf{\hat z}}} \right)$$    . The primitive translation vectors $$\overrightarrow {\bf{A}} ,\,\overrightarrow {\bf{B}} $$  and $$\overrightarrow {\bf{C}} $$ of the reciprocal lattice are