If for a system of N particles of different masses m1, m2, . . . mN with position vectors $${\overrightarrow {\bf{r}} _1},\,{\overrightarrow {\bf{r}} _2},\,.\,.\,.\,{\overrightarrow {\bf{r}} _N}$$    and corresponding velocities $${\overrightarrow {\bf{v}} _1},\,{\overrightarrow {\bf{v}} _2},\,.\,.\,.\,{\overrightarrow {\bf{v}} _N}$$    respectively such that $$\sum\limits_i {\overrightarrow {{{\bf{v}}_i}} = 0,} $$   then

If for a system of N particles of different masses m1, m2, . . . mN with position vectors $${\overrightarrow {\bf{r}} _1},\,{\overrightarrow {\bf{r}} _2},\,.\,.\,.\,{\overrightarrow {\bf{r}} _N}$$    and corresponding velocities $${\overrightarrow {\bf{v}} _1},\,{\overrightarrow {\bf{v}} _2},\,.\,.\,.\,{\overrightarrow {\bf{v}} _N}$$    respectively such that $$\sum\limits_i {\overrightarrow {{{\bf{v}}_i}} = 0,} $$   then Correct Answer the total force on the system must be zero

Related Questions

The primitive translation vectors of the body centred cubic lattice are $$\overrightarrow {\bf{a}} = \frac{a}{2}\left( {{\bf{\hat x}} + {\bf{\hat y}} - {\bf{\hat z}}} \right),\,\overrightarrow {\bf{b}} = \frac{a}{2}\left( { - {\bf{\hat x}} + {\bf{\hat y}} + {\bf{\hat z}}} \right)$$        and $$\overrightarrow {\bf{c}} = \frac{a}{2}\left( {{\bf{\hat x}} - {\bf{\hat y}} + {\bf{\hat z}}} \right)$$    . The primitive translation vectors $$\overrightarrow {\bf{A}} ,\,\overrightarrow {\bf{B}} $$  and $$\overrightarrow {\bf{C}} $$ of the reciprocal lattice are
For two non-zero vectors $$\overrightarrow {\text{A}} $$ and $$\overrightarrow {\text{B}} $$, if $$\overrightarrow {\text{A}} $$ + $$\overrightarrow {\text{B}} $$ is perpendicular to $$\overrightarrow {\text{A}} $$ - $$\overrightarrow {\text{B}} $$ then,
An atom with net magnetic moment $$\overrightarrow \mu $$ and net angular momentum $$\overrightarrow {\bf{L}} \left( {\overrightarrow \mu = \gamma \overrightarrow {\bf{L}} } \right)$$   is kept in a uniform magnetic induction $$\overrightarrow {\bf{B}} = {B_0}{\bf{\hat k}}.$$  The magnetic moment $$\overrightarrow \mu \left( { = {\mu _x}} \right)$$  is
If $$\overrightarrow {\text{a}} $$ and $$\overrightarrow {\text{b}} $$ are two arbitrary vectors with magnitudes a and b, respectively, $${\left| {\overrightarrow {\text{a}} \times \overrightarrow {\text{b}} } \right|^2}$$  will be equal to