If for a system of N particles of different masses m1, m2, . . . mN with position vectors $${\overrightarrow {\bf{r}} _1},\,{\overrightarrow {\bf{r}} _2},\,.\,.\,.\,{\overrightarrow {\bf{r}} _N}$$ and corresponding velocities $${\overrightarrow {\bf{v}} _1},\,{\overrightarrow {\bf{v}} _2},\,.\,.\,.\,{\overrightarrow {\bf{v}} _N}$$ respectively such that $$\sum\limits_i {\overrightarrow {{{\bf{v}}_i}} = 0,} $$ then
If for a system of N particles of different masses m1, m2, . . . mN with position vectors $${\overrightarrow {\bf{r}} _1},\,{\overrightarrow {\bf{r}} _2},\,.\,.\,.\,{\overrightarrow {\bf{r}} _N}$$ and corresponding velocities $${\overrightarrow {\bf{v}} _1},\,{\overrightarrow {\bf{v}} _2},\,.\,.\,.\,{\overrightarrow {\bf{v}} _N}$$ respectively such that $$\sum\limits_i {\overrightarrow {{{\bf{v}}_i}} = 0,} $$ then Correct Answer the total force on the system must be zero
মোঃ আরিফুল ইসলাম
Feb 20, 2025