Consider two particles with position vectors $$\overrightarrow {{{\bf{r}}_1}} $$ and $$\overrightarrow {{{\bf{r}}_2}} $$ . The force exerted by particle 2 on particle 1 is $$\overrightarrow {\bf{F}} \left( {\overrightarrow {{{\bf{r}}_1}} ,\,\overrightarrow {{{\bf{r}}_2}} } \right) = \left( {{{{\bf{\dot r}}}_2} - {{{\bf{\dot r}}}_1}} \right)\left( {{r_2} - {r_1}} \right).$$       The force is

Consider two particles with position vectors $$\overrightarrow {{{\bf{r}}_1}} $$ and $$\overrightarrow {{{\bf{r}}_2}} $$ . The force exerted by particle 2 on particle 1 is $$\overrightarrow {\bf{F}} \left( {\overrightarrow {{{\bf{r}}_1}} ,\,\overrightarrow {{{\bf{r}}_2}} } \right) = \left( {{{{\bf{\dot r}}}_2} - {{{\bf{\dot r}}}_1}} \right)\left( {{r_2} - {r_1}} \right).$$       The force is Correct Answer non-central and non-conservative

Related Questions

The primitive translation vectors of the body centred cubic lattice are $$\overrightarrow {\bf{a}} = \frac{a}{2}\left( {{\bf{\hat x}} + {\bf{\hat y}} - {\bf{\hat z}}} \right),\,\overrightarrow {\bf{b}} = \frac{a}{2}\left( { - {\bf{\hat x}} + {\bf{\hat y}} + {\bf{\hat z}}} \right)$$        and $$\overrightarrow {\bf{c}} = \frac{a}{2}\left( {{\bf{\hat x}} - {\bf{\hat y}} + {\bf{\hat z}}} \right)$$    . The primitive translation vectors $$\overrightarrow {\bf{A}} ,\,\overrightarrow {\bf{B}} $$  and $$\overrightarrow {\bf{C}} $$ of the reciprocal lattice are
$$R = \frac{{{R_1}{R_2}}}{{{R_1} + {R_2}}}$$  the formula represent?
The wavefunctions of two identical particles in stated n and s are given by $${\phi _n}\left( {{r_1}} \right)$$  and $${\phi _s}\left( {{r_2}} \right)$$ , respectively. The particles obey Maxwell-Boltzmann statistics. The state of the combined two particles system is expressed as
For two non-zero vectors $$\overrightarrow {\text{A}} $$ and $$\overrightarrow {\text{B}} $$, if $$\overrightarrow {\text{A}} $$ + $$\overrightarrow {\text{B}} $$ is perpendicular to $$\overrightarrow {\text{A}} $$ - $$\overrightarrow {\text{B}} $$ then,
An atom with net magnetic moment $$\overrightarrow \mu $$ and net angular momentum $$\overrightarrow {\bf{L}} \left( {\overrightarrow \mu = \gamma \overrightarrow {\bf{L}} } \right)$$   is kept in a uniform magnetic induction $$\overrightarrow {\bf{B}} = {B_0}{\bf{\hat k}}.$$  The magnetic moment $$\overrightarrow \mu \left( { = {\mu _x}} \right)$$  is