A conducting loop L of surface area S is moving with a velocity $$\overrightarrow {\bf{v}} $$ in a magnetic field $$\overrightarrow {\bf{B}} \left( {\overrightarrow {\bf{r}} ,\,t} \right) = {B_0}{t^2},\,{B_0}$$     is a positive constant of suitable dimensions. The emfinduced Vemf in the loop is given by

A conducting loop L of surface area S is moving with a velocity $$\overrightarrow {\bf{v}} $$ in a magnetic field $$\overrightarrow {\bf{B}} \left( {\overrightarrow {\bf{r}} ,\,t} \right) = {B_0}{t^2},\,{B_0}$$     is a positive constant of suitable dimensions. The emfinduced Vemf in the loop is given by Correct Answer $$ - \int\limits_S {\frac{{\partial \overrightarrow {\bf{B}} }}{{\partial t}}.d\overrightarrow {\bf{S}} } + \oint\limits_L {\left( {\overrightarrow {\bf{v}} \times \overrightarrow {\bf{B}} } \right).d\overrightarrow {\bf{L}} } $$

Related Questions

An atom with net magnetic moment $$\overrightarrow \mu $$ and net angular momentum $$\overrightarrow {\bf{L}} \left( {\overrightarrow \mu = \gamma \overrightarrow {\bf{L}} } \right)$$   is kept in a uniform magnetic induction $$\overrightarrow {\bf{B}} = {B_0}{\bf{\hat k}}.$$  The magnetic moment $$\overrightarrow \mu \left( { = {\mu _x}} \right)$$  is
The primitive translation vectors of the body centred cubic lattice are $$\overrightarrow {\bf{a}} = \frac{a}{2}\left( {{\bf{\hat x}} + {\bf{\hat y}} - {\bf{\hat z}}} \right),\,\overrightarrow {\bf{b}} = \frac{a}{2}\left( { - {\bf{\hat x}} + {\bf{\hat y}} + {\bf{\hat z}}} \right)$$        and $$\overrightarrow {\bf{c}} = \frac{a}{2}\left( {{\bf{\hat x}} - {\bf{\hat y}} + {\bf{\hat z}}} \right)$$    . The primitive translation vectors $$\overrightarrow {\bf{A}} ,\,\overrightarrow {\bf{B}} $$  and $$\overrightarrow {\bf{C}} $$ of the reciprocal lattice are