A particle constrained to move along the X-axis in a potential V = kx2, is subjected to an external time dependent force $$\overrightarrow {\bf{F}} \left( t \right).$$  Here, k is a constant, x, the distance from the origin and t is the time. At some time T, when the particle has zero velocity at x = 0, the external force is removed. The particle will

A particle constrained to move along the X-axis in a potential V = kx2, is subjected to an external time dependent force $$\overrightarrow {\bf{F}} \left( t \right).$$  Here, k is a constant, x, the distance from the origin and t is the time. At some time T, when the particle has zero velocity at x = 0, the external force is removed. The particle will Correct Answer remain at rest

Related Questions

The primitive translation vectors of the body centred cubic lattice are $$\overrightarrow {\bf{a}} = \frac{a}{2}\left( {{\bf{\hat x}} + {\bf{\hat y}} - {\bf{\hat z}}} \right),\,\overrightarrow {\bf{b}} = \frac{a}{2}\left( { - {\bf{\hat x}} + {\bf{\hat y}} + {\bf{\hat z}}} \right)$$        and $$\overrightarrow {\bf{c}} = \frac{a}{2}\left( {{\bf{\hat x}} - {\bf{\hat y}} + {\bf{\hat z}}} \right)$$    . The primitive translation vectors $$\overrightarrow {\bf{A}} ,\,\overrightarrow {\bf{B}} $$  and $$\overrightarrow {\bf{C}} $$ of the reciprocal lattice are
An atom with net magnetic moment $$\overrightarrow \mu $$ and net angular momentum $$\overrightarrow {\bf{L}} \left( {\overrightarrow \mu = \gamma \overrightarrow {\bf{L}} } \right)$$   is kept in a uniform magnetic induction $$\overrightarrow {\bf{B}} = {B_0}{\bf{\hat k}}.$$  The magnetic moment $$\overrightarrow \mu \left( { = {\mu _x}} \right)$$  is
For two non-zero vectors $$\overrightarrow {\text{A}} $$ and $$\overrightarrow {\text{B}} $$, if $$\overrightarrow {\text{A}} $$ + $$\overrightarrow {\text{B}} $$ is perpendicular to $$\overrightarrow {\text{A}} $$ - $$\overrightarrow {\text{B}} $$ then,