If $$\overrightarrow {\text{r}} $$ is the position vector of any point on a closed surface S that encloses volume V then $$\iint\limits_{\text{S}} {\overrightarrow {\text{r}} \cdot {\text{d}}\overrightarrow {\text{S}} }$$  is equal to

If $$\overrightarrow {\text{r}} $$ is the position vector of any point on a closed surface S that encloses volume V then $$\iint\limits_{\text{S}} {\overrightarrow {\text{r}} \cdot {\text{d}}\overrightarrow {\text{S}} }$$  is equal to Correct Answer 3V

Related Questions

Consider a vector field $$\overrightarrow {\text{A}} \left( {\overrightarrow {\text{r}} } \right).$$  The closed loop line integral $$\oint {\overrightarrow {\text{A}} \cdot \overrightarrow {{\text{d}}l} } $$  can be expressed as