Let $$\overrightarrow {\bf{L}} $$ = (Lx, Ly, Lz) denotes the orbital angular momentum operators of a particle and let L+ = Lx + i Ly and L- = Lx - i Ly. The particle is in aneigen state of L2 and Lz eigen values $${\hbar ^2}\left( {l + 1} \right)$$   and $$\hbar l$$  respectively. The expectation value of L+L- in this state is

Let $$\overrightarrow {\bf{L}} $$ = (Lx, Ly, Lz) denotes the orbital angular momentum operators of a particle and let L+ = Lx + i Ly and L- = Lx - i Ly. The particle is in aneigen state of L2 and Lz eigen values $${\hbar ^2}\left( {l + 1} \right)$$   and $$\hbar l$$  respectively. The expectation value of L+L- in this state is Correct Answer $$l{\hbar ^2}$$

Related Questions

An atom with net magnetic moment $$\overrightarrow \mu $$ and net angular momentum $$\overrightarrow {\bf{L}} \left( {\overrightarrow \mu = \gamma \overrightarrow {\bf{L}} } \right)$$   is kept in a uniform magnetic induction $$\overrightarrow {\bf{B}} = {B_0}{\bf{\hat k}}.$$  The magnetic moment $$\overrightarrow \mu \left( { = {\mu _x}} \right)$$  is
The primitive translation vectors of the body centred cubic lattice are $$\overrightarrow {\bf{a}} = \frac{a}{2}\left( {{\bf{\hat x}} + {\bf{\hat y}} - {\bf{\hat z}}} \right),\,\overrightarrow {\bf{b}} = \frac{a}{2}\left( { - {\bf{\hat x}} + {\bf{\hat y}} + {\bf{\hat z}}} \right)$$        and $$\overrightarrow {\bf{c}} = \frac{a}{2}\left( {{\bf{\hat x}} - {\bf{\hat y}} + {\bf{\hat z}}} \right)$$    . The primitive translation vectors $$\overrightarrow {\bf{A}} ,\,\overrightarrow {\bf{B}} $$  and $$\overrightarrow {\bf{C}} $$ of the reciprocal lattice are
A rigid body is rotating about its centre of mass; fixed at origin with an angular velocity $$\overrightarrow \omega $$ and angular acceleration $$\overrightarrow \alpha $$. If the torque acting on it is $$\overrightarrow \tau $$ and its angular momentum is $$\overrightarrow {\bf{L}} $$, then the rate of change of its kinetic energy is
For two non-zero vectors $$\overrightarrow {\text{A}} $$ and $$\overrightarrow {\text{B}} $$, if $$\overrightarrow {\text{A}} $$ + $$\overrightarrow {\text{B}} $$ is perpendicular to $$\overrightarrow {\text{A}} $$ - $$\overrightarrow {\text{B}} $$ then,