A cylindrical rod of length L and radius r, made of an inhomogeneous dielectric, is placed with its axis along the Z-direction with one end at the origin as shown below.
Electromagnetic Theory mcq question image
If the rod carries a polarization $$\overrightarrow {\bf{P}} = \left( {5{z^2} + 7} \right){\bf{\hat k}},$$    the volume bound charge inside the dielectric is

A cylindrical rod of length L and radius r, made of an inhomogeneous dielectric, is placed with its axis along the Z-direction with one end at the origin as shown below.
Electromagnetic Theory mcq question image
If the rod carries a polarization $$\overrightarrow {\bf{P}} = \left( {5{z^2} + 7} \right){\bf{\hat k}},$$    the volume bound charge inside the dielectric is Correct Answer -5πr<sup>2</sup>L<sup>2</sup>

Related Questions

A rod of length L with uniform charge density $$\lambda $$ per unit length is in the XY-plane and rotating about Z-axis passing through one of its edge with an angularvelocity $$\overrightarrow \omega $$ as shown in the figure below. $$\left( {{\bf{\hat r}},\,\hat \phi ,\,{\bf{\hat z}}} \right)$$   refer to the unit vectors at Q, $$\overrightarrow {\bf{A}} $$ is the vector potential at a distance d from the origin O along Z-axis for d ≪ L and $$\overrightarrow {\bf{J}} $$ is the current density due to the motion of the rod. Which one of the following statements is correct?
Electromagnetic Theory mcq question image
The primitive translation vectors of the body centred cubic lattice are $$\overrightarrow {\bf{a}} = \frac{a}{2}\left( {{\bf{\hat x}} + {\bf{\hat y}} - {\bf{\hat z}}} \right),\,\overrightarrow {\bf{b}} = \frac{a}{2}\left( { - {\bf{\hat x}} + {\bf{\hat y}} + {\bf{\hat z}}} \right)$$        and $$\overrightarrow {\bf{c}} = \frac{a}{2}\left( {{\bf{\hat x}} - {\bf{\hat y}} + {\bf{\hat z}}} \right)$$    . The primitive translation vectors $$\overrightarrow {\bf{A}} ,\,\overrightarrow {\bf{B}} $$  and $$\overrightarrow {\bf{C}} $$ of the reciprocal lattice are
An atom with net magnetic moment $$\overrightarrow \mu $$ and net angular momentum $$\overrightarrow {\bf{L}} \left( {\overrightarrow \mu = \gamma \overrightarrow {\bf{L}} } \right)$$   is kept in a uniform magnetic induction $$\overrightarrow {\bf{B}} = {B_0}{\bf{\hat k}}.$$  The magnetic moment $$\overrightarrow \mu \left( { = {\mu _x}} \right)$$  is
For two non-zero vectors $$\overrightarrow {\text{A}} $$ and $$\overrightarrow {\text{B}} $$, if $$\overrightarrow {\text{A}} $$ + $$\overrightarrow {\text{B}} $$ is perpendicular to $$\overrightarrow {\text{A}} $$ - $$\overrightarrow {\text{B}} $$ then,