Aspherical conductor of radius a is placed in a uniform electric field $$\overrightarrow {\bf{E}} = {E_0}\,{\bf{\hat k}}.$$   The potential at a point P(r, θ) for r > a, is given by $$\phi \left( {r,\,\theta } \right) = {\text{constant}} - {E_0}r\cos \theta + \frac{{{E_0}{a^3}}}{{{r^2}}}\cos \theta $$
where, r is the distance of P from the centre O of the sphere and θ is the angle, OP makes with the Z-axis.
Electromagnetic Theory mcq question image
The charge density on the sphere at θ = 30° is

Aspherical conductor of radius a is placed in a uniform electric field $$\overrightarrow {\bf{E}} = {E_0}\,{\bf{\hat k}}.$$   The potential at a point P(r, θ) for r > a, is given by $$\phi \left( {r,\,\theta } \right) = {\text{constant}} - {E_0}r\cos \theta + \frac{{{E_0}{a^3}}}{{{r^2}}}\cos \theta $$
where, r is the distance of P from the centre O of the sphere and θ is the angle, OP makes with the Z-axis.
Electromagnetic Theory mcq question image
The charge density on the sphere at θ = 30° is Correct Answer $$3\sqrt 3 {\varepsilon _0}\,{E_0}/2$$

Related Questions

A rod of length L with uniform charge density $$\lambda $$ per unit length is in the XY-plane and rotating about Z-axis passing through one of its edge with an angularvelocity $$\overrightarrow \omega $$ as shown in the figure below. $$\left( {{\bf{\hat r}},\,\hat \phi ,\,{\bf{\hat z}}} \right)$$   refer to the unit vectors at Q, $$\overrightarrow {\bf{A}} $$ is the vector potential at a distance d from the origin O along Z-axis for d ≪ L and $$\overrightarrow {\bf{J}} $$ is the current density due to the motion of the rod. Which one of the following statements is correct?
Electromagnetic Theory mcq question image
The primitive translation vectors of the body centred cubic lattice are $$\overrightarrow {\bf{a}} = \frac{a}{2}\left( {{\bf{\hat x}} + {\bf{\hat y}} - {\bf{\hat z}}} \right),\,\overrightarrow {\bf{b}} = \frac{a}{2}\left( { - {\bf{\hat x}} + {\bf{\hat y}} + {\bf{\hat z}}} \right)$$        and $$\overrightarrow {\bf{c}} = \frac{a}{2}\left( {{\bf{\hat x}} - {\bf{\hat y}} + {\bf{\hat z}}} \right)$$    . The primitive translation vectors $$\overrightarrow {\bf{A}} ,\,\overrightarrow {\bf{B}} $$  and $$\overrightarrow {\bf{C}} $$ of the reciprocal lattice are
An atom with net magnetic moment $$\overrightarrow \mu $$ and net angular momentum $$\overrightarrow {\bf{L}} \left( {\overrightarrow \mu = \gamma \overrightarrow {\bf{L}} } \right)$$   is kept in a uniform magnetic induction $$\overrightarrow {\bf{B}} = {B_0}{\bf{\hat k}}.$$  The magnetic moment $$\overrightarrow \mu \left( { = {\mu _x}} \right)$$  is