A circular arc QTS is kept in an external magnetic field $${\overrightarrow {\bf{B}} _0}$$ as shown in figure. The arc carries a current $$l$$. The magnetic field is directed normal and into the page. The force acting on the arc is
Electromagnetic Theory mcq question image

A circular arc QTS is kept in an external magnetic field $${\overrightarrow {\bf{B}} _0}$$ as shown in figure. The arc carries a current $$l$$. The magnetic field is directed normal and into the page. The force acting on the arc is
Electromagnetic Theory mcq question image Correct Answer $$l{B_0}R{\bf{\hat k}}$$

Related Questions

An atom with net magnetic moment $$\overrightarrow \mu $$ and net angular momentum $$\overrightarrow {\bf{L}} \left( {\overrightarrow \mu = \gamma \overrightarrow {\bf{L}} } \right)$$   is kept in a uniform magnetic induction $$\overrightarrow {\bf{B}} = {B_0}{\bf{\hat k}}.$$  The magnetic moment $$\overrightarrow \mu \left( { = {\mu _x}} \right)$$  is
A rod of length L with uniform charge density $$\lambda $$ per unit length is in the XY-plane and rotating about Z-axis passing through one of its edge with an angularvelocity $$\overrightarrow \omega $$ as shown in the figure below. $$\left( {{\bf{\hat r}},\,\hat \phi ,\,{\bf{\hat z}}} \right)$$   refer to the unit vectors at Q, $$\overrightarrow {\bf{A}} $$ is the vector potential at a distance d from the origin O along Z-axis for d ≪ L and $$\overrightarrow {\bf{J}} $$ is the current density due to the motion of the rod. Which one of the following statements is correct?
Electromagnetic Theory mcq question image
The primitive translation vectors of the body centred cubic lattice are $$\overrightarrow {\bf{a}} = \frac{a}{2}\left( {{\bf{\hat x}} + {\bf{\hat y}} - {\bf{\hat z}}} \right),\,\overrightarrow {\bf{b}} = \frac{a}{2}\left( { - {\bf{\hat x}} + {\bf{\hat y}} + {\bf{\hat z}}} \right)$$        and $$\overrightarrow {\bf{c}} = \frac{a}{2}\left( {{\bf{\hat x}} - {\bf{\hat y}} + {\bf{\hat z}}} \right)$$    . The primitive translation vectors $$\overrightarrow {\bf{A}} ,\,\overrightarrow {\bf{B}} $$  and $$\overrightarrow {\bf{C}} $$ of the reciprocal lattice are
For two non-zero vectors $$\overrightarrow {\text{A}} $$ and $$\overrightarrow {\text{B}} $$, if $$\overrightarrow {\text{A}} $$ + $$\overrightarrow {\text{B}} $$ is perpendicular to $$\overrightarrow {\text{A}} $$ - $$\overrightarrow {\text{B}} $$ then,