A rigid frictionless rod rotates anticlockwise in a vertical plane with angular velocity $$\overrightarrow \omega $$. A bead of mass m moves outward along the rod with constant velocity $$\overrightarrow {{u_0}} $$ . The bead will experience a coriolis force

A rigid frictionless rod rotates anticlockwise in a vertical plane with angular velocity $$\overrightarrow \omega $$. A bead of mass m moves outward along the rod with constant velocity $$\overrightarrow {{u_0}} $$ . The bead will experience a coriolis force Correct Answer $$ - 2m{u_0}\omega \hat \theta $$

Related Questions

A rigid body is rotating about its centre of mass; fixed at origin with an angular velocity $$\overrightarrow \omega $$ and angular acceleration $$\overrightarrow \alpha $$. If the torque acting on it is $$\overrightarrow \tau $$ and its angular momentum is $$\overrightarrow {\bf{L}} $$, then the rate of change of its kinetic energy is
A rod of length L with uniform charge density $$\lambda $$ per unit length is in the XY-plane and rotating about Z-axis passing through one of its edge with an angularvelocity $$\overrightarrow \omega $$ as shown in the figure below. $$\left( {{\bf{\hat r}},\,\hat \phi ,\,{\bf{\hat z}}} \right)$$   refer to the unit vectors at Q, $$\overrightarrow {\bf{A}} $$ is the vector potential at a distance d from the origin O along Z-axis for d ≪ L and $$\overrightarrow {\bf{J}} $$ is the current density due to the motion of the rod. Which one of the following statements is correct?
Electromagnetic Theory mcq question image
An atom with net magnetic moment $$\overrightarrow \mu $$ and net angular momentum $$\overrightarrow {\bf{L}} \left( {\overrightarrow \mu = \gamma \overrightarrow {\bf{L}} } \right)$$   is kept in a uniform magnetic induction $$\overrightarrow {\bf{B}} = {B_0}{\bf{\hat k}}.$$  The magnetic moment $$\overrightarrow \mu \left( { = {\mu _x}} \right)$$  is