1 Answers

Option 3 : Quantity A ≥ Quantity B

Solving for Quantity A:

Let the number be ‘x’

Sum of 9 numbers = 9 × 115 = 1035

When the number is added, sum of 10 numbers = 1035 + x

Average of 10 numbers = 27 + x

⇒ 10(27 + x) = 1035 + x

⇒ 270 + 10x = 1035 + x

⇒ 9x = 765

⇒ x = 765/9 = 85

⇒ Quantity A = 85

Solving for Quantity B:

Let the numbers be ‘x’ and ‘(x + 8)’

Sum of 8 numbers = 8 × 96 = 768

Sum of 10 numbers = 768 + x + x + 8 = 776 + 2x

Average of 10 numbers = 96 - 3 = 93

⇒ 776 + 2x = 10(93)

⇒ 2x = 930 - 776

⇒ x = 154/2 = 77

⇒ x + 8 = 77 + 8 = 85

⇒ Quantity B = 77, 85

∴ Quantity A ≥ Quantity B
5 views

Related Questions