In a mixture the ratio of brandy and whisky is 5 ∶ 3. If 12 ml of mixture is taken out and 5 ml of whisky is added to the mixture, such that the ratio of brandy and whisky becomes 35 ∶ 31. What is the concentration of brandy in the mixture at the beginning?

In a mixture the ratio of brandy and whisky is 5 ∶ 3. If 12 ml of mixture is taken out and 5 ml of whisky is added to the mixture, such that the ratio of brandy and whisky becomes 35 ∶ 31. What is the concentration of brandy in the mixture at the beginning? Correct Answer 25 ml

Let the quantity of brandy and whisky in the mixture be 5x and 3x respectively

12 ml mixture is taken out

The quantity of mixture taken out is removed in the same ratio as the concentration of contents in the mixture

Quantity of beer left after removal = 5x – (12 × 5/8) = 5x – 7.5

Quantity of whisky left after removal = 3x – (12 × 3/8) = 3x – 4.5

Now, 5 ml of whisky is added to the mixture, such that the ratio of brandy and whisky becomes 35 ∶ 31

∴ According to question,

(5x – 7.5)/(3x – 4.5 + 5) = 35/31

⇒ 155x – 232.5 = 105x + 17.5

⇒ 50x = 250

⇒ x = 5

∴ Quantity of beer initially = 5 × 5 = 25 ml

Quantity of whisky initially = 3 × 5 = 15 ml

∴ The concentration of brandy in the mixture at the beginning is 25 ml

Related Questions

Each question below is followed by two statements I and II. You have to determine whether the data given in the statements are sufficient for answering the question. You should use the data and your knowledge of Mathematics to choose the best possible answer. What is the quantity of whisky in the final mixture? I. In a vessel A whisky is 3/5th of the total mixture and 15 litres of mixture is taken out and same quantity of water is mixed into it. The content of vessel A is put into a container having whisky and water in the ratio 2 ∶ 1. II.The capacity of the container is 36 litre in which content of vessel is poured now in the resultant mixture water is 1 litre more than the whisky.