A uniform magnetic field exists in the plane of paper pointing from left to right as shown in figure. In the field an electron and a proton move as shown. The electron and the proton experience

A uniform magnetic field exists in the plane of paper pointing from left to right as shown in figure. In the field an electron and a proton move as shown. The electron and the proton experience Correct Answer Force both pointing into the plane of paper

CONCEPT:

  • Fleming Left-hand rule gives the force experienced by a charged particle moving in a magnetic field or a current-carrying wire placed in a magnetic field.
  • It states that "stretch the thumb, the forefinger, and the central finger of the left hand so that they are mutually perpendicular to each other.
  • If the forefinger points in the direction of the magnetic field, the central finger points in the direction of motion of charge, then the thumb points in the direction of force experienced by positively charged particles."

[ alt="GATE EE Reported 51" src="https://storage.googleapis.com/tb-img/production/19/05/GATE%20EE_Reported_51.PNG" style="width: 255px; height: 237px;">

EXPLANATION:

  • The proton and electron are travelling in the opposite direction.
  • However, since both are of opposite nature, the current through them is in the same direction, which is the direction of positive charge, proton.
  • Hence both will experience a force in the same direction.
  • The direction of force is calculated using Fleming’s left-hand rule:

Forefinger: In the direction of the field (towards left)

Middle finger: In the direction of current (upwards)

The Thumb is pointing into the paper.

  • Hence the force experienced by both electron and proton is into the plane of the paper.

Related Questions

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaabckacaaIXaGaaGymaiaacYcacaqGGcGaaeiDaiaa % bIgacaqGLbGaaeOBaiaabckacaqGMbGaaeyAaiaab6gacaqGKbGaae % iOaiaabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabggacaqG % SbGaaeyDaiaabwgacaqGGcGaae4BaiaabAgacaqGGcWaaeWaa8aaba % WdbiaabIhacqGHsislcaaIXaGaaG4maaGaayjkaiaawMcaa8aadaah % aaWcbeqaa8qacaaI1aaaaOGaaeiOaiabgUcaRiaabckadaWcaaWdae % aapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaadIhacqGHsislcaaI % XaGaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aaaaa % aakiaacckacaGGUaaaaa!70B8! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = {\rm{\;}}11,{\rm{\;then\;find\;\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaabckacaaIXaGaaGymaiaacYcacaqGGcGaaeiDaiaa % bIgacaqGLbGaaeOBaiaabckacaqGMbGaaeyAaiaab6gacaqGKbGaae % iOaiaabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabggacaqG % SbGaaeyDaiaabwgacaqGGcGaae4BaiaabAgacaqGGcWaaeWaa8aaba % WdbiaabIhacqGHsislcaaIXaGaaG4maaGaayjkaiaawMcaa8aadaah % aaWcbeqaa8qacaaI1aaaaOGaaeiOaiabgUcaRiaabckadaWcaaWdae % aapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaadIhacqGHsislcaaI % XaGaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aaaaa % aakiaacckacaGGUaaaaa!70B8! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = {\rm{\;}}11,{\rm{\;then\;find\;\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaabckacaaIXaGaaGymaiaacYcacaqGGcGaaeiDaiaa % bIgacaqGLbGaaeOBaiaabckacaqGMbGaaeyAaiaab6gacaqGKbGaae % iOaiaabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabggacaqG % SbGaaeyDaiaabwgacaqGGcGaae4BaiaabAgacaqGGcWaaeWaa8aaba % WdbiaabIhacqGHsislcaaIXaGaaG4maaGaayjkaiaawMcaa8aadaah % aaWcbeqaa8qacaaI1aaaaOGaaeiOaiabgUcaRiaabckadaWcaaWdae % aapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaadIhacqGHsislcaaI % XaGaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aaaaa % aakiaacckacaGGUaaaaa!70B8! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = {\rm{\;}}11,{\rm{\;then\;find\;\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaaigdacaaIXaGaaiilaiaabckacaqG0bGaaeiAaiaa % bwgacaqGUbGaaeiOaiaabAgacaqGPbGaaeOBaiaabsgacaqGGcGaae % iDaiaabIgacaqGLbGaaeiOaiaabAhacaqGHbGaaeiBaiaabwhacaqG % LbGaaeiOaiaab+gacaqGMbGaaeiOamaabmaapaqaa8qacaqG4bGaey % OeI0IaaGymaiaaiodaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGa % aGynaaaakiaabckacqGHRaWkcaqGGcWaaSaaa8aabaWdbiaaigdaa8 % aabaWdbmaabmaapaqaa8qacaWG4bGaeyOeI0IaaGymaiaaigdaaiaa % wIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynaaaaaaGccaGGGcGaai % Olaaaa!6E72! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = 11,{\rm{\;then\;find\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)If x + 1/(x - 13) = 11, then what will be the value of (x – 13)5 + 1/(x – 11)5?