Consider the differential equation $$\frac{{{{\text{d}}^2}{\text{y}}\left( {\text{t}} \right)}}{{{\text{d}}{{\text{t}}^2}}} + 2\frac{{{\text{dy}}\left( {\text{t}} \right)}}{{{\text{dt}}}} + {\text{y}}\left( {\text{t}} \right) = \delta \left( {\text{t}} \right)$$ with $${\left. {{\text{y}}\left( {\text{t}} \right)} \right|_{{\text{t}} = 0}} = - 2$$ and $${\left. {\frac{{{\text{dy}}}}{{{\text{dt}}}}} \right|_{{\text{t}} = 0}} = 0.$$
The numerical value of $${\left. {\frac{{{\text{dy}}}}{{{\text{dt}}}}} \right|_{{\text{t}} = 0}}$$ is
Consider the differential equation $$\frac{{{{\text{d}}^2}{\text{y}}\left( {\text{t}} \right)}}{{{\text{d}}{{\text{t}}^2}}} + 2\frac{{{\text{dy}}\left( {\text{t}} \right)}}{{{\text{dt}}}} + {\text{y}}\left( {\text{t}} \right) = \delta \left( {\text{t}} \right)$$ with $${\left. {{\text{y}}\left( {\text{t}} \right)} \right|_{{\text{t}} = 0}} = - 2$$ and $${\left. {\frac{{{\text{dy}}}}{{{\text{dt}}}}} \right|_{{\text{t}} = 0}} = 0.$$
The numerical value of $${\left. {\frac{{{\text{dy}}}}{{{\text{dt}}}}} \right|_{{\text{t}} = 0}}$$ is Correct Answer 1
মোঃ আরিফুল ইসলাম
Feb 20, 2025