Let the function
\[{\text{f}}\left( \theta \right) = \left| {\begin{array}{*{20}{c}} {\sin \theta }&{\cos \theta }&{\tan \theta } \\ {\sin \left( {\frac{\pi }{6}} \right)}&{\cos \left( {\frac{\pi }{6}} \right)}&{\tan \left( {\frac{\pi }{6}} \right)} \\ {\sin \left( {\frac{\pi }{3}} \right)}&{\cos \left( {\frac{\pi }{3}} \right)}&{\tan \left( {\frac{\pi }{3}} \right)} \end{array}} \right|\

Let the function
\[{\text{f}}\left( \theta \right) = \left| {\begin{array}{*{20}{c}} {\sin \theta }&{\cos \theta }&{\tan \theta } \\ {\sin \left( {\frac{\pi }{6}} \right)}&{\cos \left( {\frac{\pi }{6}} \right)}&{\tan \left( {\frac{\pi }{6}} \right)} \\ {\sin \left( {\frac{\pi }{3}} \right)}&{\cos \left( {\frac{\pi }{3}} \right)}&{\tan \left( {\frac{\pi }{3}} \right)} \end{array}} \right|\ Correct Answer <br>where \\,   and \  denote the derivative of f with respect to \. Which of the following statements is/are TRUE?<br>I. There exists \   such that \<br>II. There exists \   such that\, <p><span>A.</span> l only, </span> ll only

Neither l nor ll

] Option C ]

Related Questions