A set of linear equations is given in the form Ax = b, where A is a 2 × 4 matrix with real number entries and b ≠ 0. Will it be possible to solve for x and obtain a unique solution by multiplying both left and right sides of the equation by AT (the super script T denotes the transpose) and inverting the matrix AT A? Answer is 

A set of linear equations is given in the form Ax = b, where A is a 2 × 4 matrix with real number entries and b ≠ 0. Will it be possible to solve for x and obtain a unique solution by multiplying both left and right sides of the equation by AT (the super script T denotes the transpose) and inverting the matrix AT A? Answer is  Correct Answer No, it is not possible to get a unique solution for any 2 × 4 matrix A.

Concept:

From the properties of a matrix,

The rank of m × n matrix is always ≤ min {m, n}

If the rank of matrix A is ρ(A) and rank of matrix B is ρ(B), then the rank of matrix AB is given by

ρ(AB) ≤ min {ρ(A), ρ(B)}

If n × n matrix is singular, the rank will be less than ≤ n

Calculation:

Given:

AX = B

Where A is 2 × 4 matrices and b ≠ 0

The order of AT is 4 × 2

The order of ATA is 4 × 4

Rank of (A) ≤ min (2, 4) = 2

Rank of (AT) ≤ min (2, 4) = 2

Rank (ATA) ≤ min (2, 2) = 2

As the matrix ATA is of order 4 × 4, to have a unique solution the rank of ATA should be 4.

Therefore, the unique solution of this equation is not possible.

Related Questions