Consider a system governed by the following equations:
$$\frac{{{\text{d}}{{\text{x}}_1}\left( {\text{t}} \right)}}{{{\text{dt}}}} = {{\text{x}}_2}\left( {\text{t}} \right) - {{\text{x}}_1}\left( {\text{t}} \right);\,\frac{{{\text{d}}{{\text{x}}_2}\left( {\text{t}} \right)}}{{{\text{dt}}}} = {{\text{x}}_1}\left( {\text{t}} \right) - {{\text{x}}_2}\left( {\text{t}} \right)$$
The initial conditions are such that $${{\text{x}}_1}\left( 0 \right)
Consider a system governed by the following equations:
$$\frac{{{\text{d}}{{\text{x}}_1}\left( {\text{t}} \right)}}{{{\text{dt}}}} = {{\text{x}}_2}\left( {\text{t}} \right) - {{\text{x}}_1}\left( {\text{t}} \right);\,\frac{{{\text{d}}{{\text{x}}_2}\left( {\text{t}} \right)}}{{{\text{dt}}}} = {{\text{x}}_1}\left( {\text{t}} \right) - {{\text{x}}_2}\left( {\text{t}} \right)$$
The initial conditions are such that $${{\text{x}}_1}\left( 0 \right) Correct Answer $${{\text{x}}_{1{\text{f}}}} = {{\text{x}}_{2{\text{f}}}}
মোঃ আরিফুল ইসলাম
Feb 20, 2025
