Let cos α + cos β = 2 and sin α + sin β = 0, where 0 ≤ α ≤ 90°, 0 ≤ β ≤ 90°. What is the value of cos 2α - cos 2β?

Let cos α + cos β = 2 and sin α + sin β = 0, where 0 ≤ α ≤ 90°, 0 ≤ β ≤ 90°. What is the value of cos 2α - cos 2β? Correct Answer 0

Calculation:

⇒ cos α + cos β = 2

Squaring,

⇒ cos2α + 2cosα .cosβ + cos2β = 4......(1)

⇒ sin α + sin β = 0

Squaring,

⇒ sin2α + 2sinα.sinβ + sin2β = 0......(2)

Adding,

⇒ 2cos(α - β) = 2

⇒ cos(α - β) = 1

⇒ α - β = cos-1(1) = 0

⇒ α = β

⇒ ? = cos 2α - cos 2β

∴ ? = 0

Related Questions

Find the ∫∫x3 y3 sin⁡(x)sin⁡(y) dxdy. ]) b) (-x3 Cos(x) – 3x2 Sin(x) – 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3]) c) (-x3 Cos(x) + 3x2 Sin(x) + 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3y2 Sin(y) + 6yCos(y) – 6Sin(y)) d) (–x3 Cos(x) + 6xCos(x) – 6Sin(x))(-y3 Cos(y))