If sin θ1 + sin θ2 + sin θ3 + sin θ4 = 4, then what is the value of cos θ1 + cos θ2 + cos θ3 + cos θ4?

If sin θ1 + sin θ2 + sin θ3 + sin θ4 = 4, then what is the value of cos θ1 + cos θ2 + cos θ3 + cos θ4? Correct Answer 0

Concept:

  • -1 ≤ sin θ ≤ 1
  • 1 ≤ cos θ ≤ 1

 

Calculation:

Given: sin θ1 + sin θ2 + sin θ3 + sin θ4 = 4

As we know that maximum value of sin θ is 1,

⇒ sin θ1 + sin θ2 + sin θ3 + sin θ4 = 1 + 1 + 1 + 1

So, the value of the given function is its maximum value which can only be obtained, when sin θ = 1

∴ θ1 = θ2 = θ3 = θ4 = π/2

Now,

⇒ cos θ1 + cos θ2 + cos θ3 + cos θ4

= cos (π/2) + cos (π/2) + cos (π/2) + cos (π/2)

= 0

Related Questions

Find the ∫∫x3 y3 sin⁡(x)sin⁡(y) dxdy. ]) b) (-x3 Cos(x) – 3x2 Sin(x) – 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3]) c) (-x3 Cos(x) + 3x2 Sin(x) + 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3y2 Sin(y) + 6yCos(y) – 6Sin(y)) d) (–x3 Cos(x) + 6xCos(x) – 6Sin(x))(-y3 Cos(y))