If sin θ1 + sin θ2 + sin θ3 + sin θ4 = 4, then what is the value of cos θ1 + cos θ2 + cos θ3 + cos θ4?
If sin θ1 + sin θ2 + sin θ3 + sin θ4 = 4, then what is the value of cos θ1 + cos θ2 + cos θ3 + cos θ4? Correct Answer 0
Concept:
- -1 ≤ sin θ ≤ 1
- 1 ≤ cos θ ≤ 1
Calculation:
Given: sin θ1 + sin θ2 + sin θ3 + sin θ4 = 4
As we know that maximum value of sin θ is 1,
⇒ sin θ1 + sin θ2 + sin θ3 + sin θ4 = 1 + 1 + 1 + 1
So, the value of the given function is its maximum value which can only be obtained, when sin θ = 1
∴ θ1 = θ2 = θ3 = θ4 = π/2
Now,
⇒ cos θ1 + cos θ2 + cos θ3 + cos θ4
= cos (π/2) + cos (π/2) + cos (π/2) + cos (π/2)
= 0
মোঃ আরিফুল ইসলাম
Feb 20, 2025