Find the value of (cos x + cos y) (sin x – sin y) / (cos x – cos y) (sin x + sin y), where x = 90° and y = 0°.

Find the value of (cos x + cos y) (sin x – sin y) / (cos x – cos y) (sin x + sin y), where x = 90° and y = 0°. Correct Answer -1

(cos x + cos y) (sin x – sin y) / (cos x – cos y) (sin x + sin y),

Putting x = 90° and y = 0°

⇒ (0 + 1)(1 – 0) / (0 – 1)(1 – 0)

∴ (cos x + cos y) (sin x – sin y) / (cos x – cos y) (sin x + sin y) = -1

Related Questions

Find the ∫∫x3 y3 sin⁡(x)sin⁡(y) dxdy. ]) b) (-x3 Cos(x) – 3x2 Sin(x) – 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3]) c) (-x3 Cos(x) + 3x2 Sin(x) + 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3y2 Sin(y) + 6yCos(y) – 6Sin(y)) d) (–x3 Cos(x) + 6xCos(x) – 6Sin(x))(-y3 Cos(y))