The value of [sin (X + Y) cos (X + Y) + sin (X - Y) cos (X - Y)]/[sin (X + Y) cos (X - Y) + sin (X - Y) cos (X + Y)] is:

The value of [sin (X + Y) cos (X + Y) + sin (X - Y) cos (X - Y)]/[sin (X + Y) cos (X - Y) + sin (X - Y) cos (X + Y)] is: Correct Answer cos 2Y

Given:

Formula Used:

sin 2A = 2 sin A cos A

sin A + sin B = 2 sin (A + B)/2 cos (A - B)/2

sin (A + B) = sin A cos B + cos A sin B

Calculation:

∵ sin 2A = 2 sin A cos A

Numerator = sin (X + Y) cos (X + Y) + sin (X - Y) cos (X - Y)

= ½ sin (2X + 2Y) + ½ sin (2X - 2Y)

= ½        

= ½

= sin 2X cos 2Y

Denominator = sin (X + Y) cos (X - Y) + sin (X - Y) cos (X + Y)

= sin (X + Y + X - Y)

= sin 2X

Hence,

/

= (sin 2X cos 2Y)/sin 2X

= cos 2Y

Related Questions

Find the ∫∫x3 y3 sin⁡(x)sin⁡(y) dxdy. ]) b) (-x3 Cos(x) – 3x2 Sin(x) – 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3]) c) (-x3 Cos(x) + 3x2 Sin(x) + 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3y2 Sin(y) + 6yCos(y) – 6Sin(y)) d) (–x3 Cos(x) + 6xCos(x) – 6Sin(x))(-y3 Cos(y))