The value of [sin (X + Y) cos (X + Y) + sin (X - Y) cos (X - Y)]/[sin (X + Y) cos (X - Y) + sin (X - Y) cos (X + Y)] is:
The value of [sin (X + Y) cos (X + Y) + sin (X - Y) cos (X - Y)]/[sin (X + Y) cos (X - Y) + sin (X - Y) cos (X + Y)] is: Correct Answer cos 2Y
Given:
Formula Used:
sin 2A = 2 sin A cos A
sin A + sin B = 2 sin (A + B)/2 cos (A - B)/2
sin (A + B) = sin A cos B + cos A sin B
Calculation:
∵ sin 2A = 2 sin A cos A
Numerator = sin (X + Y) cos (X + Y) + sin (X - Y) cos (X - Y)
= ½ sin (2X + 2Y) + ½ sin (2X - 2Y)
= ½
= ½
= sin 2X cos 2Y
Denominator = sin (X + Y) cos (X - Y) + sin (X - Y) cos (X + Y)
= sin (X + Y + X - Y)
= sin 2X
Hence,
/
= (sin 2X cos 2Y)/sin 2X
= cos 2Y
মোঃ আরিফুল ইসলাম
Feb 20, 2025