A periodic signal x(t) has a trigonometric Fourier series expansion
$$x\left( t \right) = {a_0} + \sum\limits_{n = 1}^\infty {\left( {{a_n}\,\cos \,n{\omega _0}t + {b_n}\sin \,n{\omega _0}t} \right)} $$
If $$x\left( t \right) = - x\left( { - t} \right) = - x\left( {{{t - \pi } \over {{\omega _0}}}} \right),$$      we can conclude that

A periodic signal x(t) has a trigonometric Fourier series expansion
$$x\left( t \right) = {a_0} + \sum\limits_{n = 1}^\infty {\left( {{a_n}\,\cos \,n{\omega _0}t + {b_n}\sin \,n{\omega _0}t} \right)} $$
If $$x\left( t \right) = - x\left( { - t} \right) = - x\left( {{{t - \pi } \over {{\omega _0}}}} \right),$$      we can conclude that Correct Answer a<sub>n</sub> are zero for all n and b<sub>n</sub> are zero for n even

Related Questions

Two monochromatic waves having frequencies $$\omega $$ and $$\omega + \Delta \omega \left( {\Delta \omega \ll \omega } \right)$$    and corresponding wavelengths $$\lambda $$ and $$\lambda - \Delta \lambda \left( {\Delta \lambda \ll \lambda } \right)$$    of same polarization, travelling along X-axis are superimposed on each other. The phase velocity and group velocity of the resultant wave are respectively given by