The function f(t) has the Fourier transform f(ω)
The Fourier transform of
$$g\left( t \right) = \left( {\int\limits_{ - \infty }^\infty {g\left( t \right){e^{ - j\omega }}dt} } \right)$$     is

The function f(t) has the Fourier transform f(ω)
The Fourier transform of
$$g\left( t \right) = \left( {\int\limits_{ - \infty }^\infty {g\left( t \right){e^{ - j\omega }}dt} } \right)$$     is Correct Answer $${1 \over {2\pi }}f\left( { - \omega } \right)$$

Related Questions

Laplace transform of the function f(t) is given by $${\text{F}}\left( {\text{s}} \right) = {\text{L}}\left\{ {{\text{f}}\left( {\text{t}} \right)} \right\} = \int_0^\infty {{\text{f}}\left( {\text{t}} \right){{\text{e}}^{ - {\text{st}}}}{\text{dt}}{\text{.}}} $$       Laplace transform of the function shown below is given by
Transform Theory mcq question image