Let x(t) be a periodic function with period T = 10. The Fourier series coefficients for this series are denoted by $${a_k}$$ , that is
$$x\left( t \right) = \sum\limits_{k = - \infty }^\infty {{a_k}{e^{jk{{2\pi } \over T}t}}} .$$
The same function x(t) can also be considered as a periodic function with period T' = 40. Let bk be the Fourier series coefficients when period is taken as T'. If $$\sum\limits_{k = - \infty }^\infty {\left| {{a_k}} \right|} = 16,$$    then $$\sum\limits_{k = - \infty }^\infty {\left| {{b_k}} \right|} $$  is equal to

Let x(t) be a periodic function with period T = 10. The Fourier series coefficients for this series are denoted by $${a_k}$$ , that is
$$x\left( t \right) = \sum\limits_{k = - \infty }^\infty {{a_k}{e^{jk{{2\pi } \over T}t}}} .$$
The same function x(t) can also be considered as a periodic function with period T' = 40. Let bk be the Fourier series coefficients when period is taken as T'. If $$\sum\limits_{k = - \infty }^\infty {\left| {{a_k}} \right|} = 16,$$    then $$\sum\limits_{k = - \infty }^\infty {\left| {{b_k}} \right|} $$  is equal to Correct Answer 16

Related Questions

The Fourier series representation of an impulse train denoted by
$$s\left( t \right) = \sum\limits_{n = - \infty }^\infty {\delta \left( {t - n{T_0}} \right)} \,{\rm{is}}\,{\rm{given}}\,{\rm{by}}$$
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaabckacaaIXaGaaGymaiaacYcacaqGGcGaaeiDaiaa % bIgacaqGLbGaaeOBaiaabckacaqGMbGaaeyAaiaab6gacaqGKbGaae % iOaiaabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabggacaqG % SbGaaeyDaiaabwgacaqGGcGaae4BaiaabAgacaqGGcWaaeWaa8aaba % WdbiaabIhacqGHsislcaaIXaGaaG4maaGaayjkaiaawMcaa8aadaah % aaWcbeqaa8qacaaI1aaaaOGaaeiOaiabgUcaRiaabckadaWcaaWdae % aapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaadIhacqGHsislcaaI % XaGaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aaaaa % aakiaacckacaGGUaaaaa!70B8! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = {\rm{\;}}11,{\rm{\;then\;find\;\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaabckacaaIXaGaaGymaiaacYcacaqGGcGaaeiDaiaa % bIgacaqGLbGaaeOBaiaabckacaqGMbGaaeyAaiaab6gacaqGKbGaae % iOaiaabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabggacaqG % SbGaaeyDaiaabwgacaqGGcGaae4BaiaabAgacaqGGcWaaeWaa8aaba % WdbiaabIhacqGHsislcaaIXaGaaG4maaGaayjkaiaawMcaa8aadaah % aaWcbeqaa8qacaaI1aaaaOGaaeiOaiabgUcaRiaabckadaWcaaWdae % aapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaadIhacqGHsislcaaI % XaGaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aaaaa % aakiaacckacaGGUaaaaa!70B8! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = {\rm{\;}}11,{\rm{\;then\;find\;\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaabckacaaIXaGaaGymaiaacYcacaqGGcGaaeiDaiaa % bIgacaqGLbGaaeOBaiaabckacaqGMbGaaeyAaiaab6gacaqGKbGaae % iOaiaabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabggacaqG % SbGaaeyDaiaabwgacaqGGcGaae4BaiaabAgacaqGGcWaaeWaa8aaba % WdbiaabIhacqGHsislcaaIXaGaaG4maaGaayjkaiaawMcaa8aadaah % aaWcbeqaa8qacaaI1aaaaOGaaeiOaiabgUcaRiaabckadaWcaaWdae % aapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaadIhacqGHsislcaaI % XaGaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aaaaa % aakiaacckacaGGUaaaaa!70B8! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = {\rm{\;}}11,{\rm{\;then\;find\;\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaaigdacaaIXaGaaiilaiaabckacaqG0bGaaeiAaiaa % bwgacaqGUbGaaeiOaiaabAgacaqGPbGaaeOBaiaabsgacaqGGcGaae % iDaiaabIgacaqGLbGaaeiOaiaabAhacaqGHbGaaeiBaiaabwhacaqG % LbGaaeiOaiaab+gacaqGMbGaaeiOamaabmaapaqaa8qacaqG4bGaey % OeI0IaaGymaiaaiodaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGa % aGynaaaakiaabckacqGHRaWkcaqGGcWaaSaaa8aabaWdbiaaigdaa8 % aabaWdbmaabmaapaqaa8qacaWG4bGaeyOeI0IaaGymaiaaigdaaiaa % wIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynaaaaaaGccaGGGcGaai % Olaaaa!6E72! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = 11,{\rm{\;then\;find\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)If x + 1/(x - 13) = 11, then what will be the value of (x – 13)5 + 1/(x – 11)5?