For a function g(t), it is given that
$$\int\limits_{ - \infty }^{ + \infty } {g\left( t \right){e^{ - j\omega t}}dt = \omega {e^{ - 2{\omega ^2}}}} $$    for any real value $$\omega $$ . If $$y\left( t \right) = \int\limits_{ - \infty }^t {g\left( \tau \right)} d\tau ,\,{\rm{then}}\,\int\limits_{ - \infty }^{ + \infty } {y\left( t \right)} dt$$       is. . . . . . . .

For a function g(t), it is given that
$$\int\limits_{ - \infty }^{ + \infty } {g\left( t \right){e^{ - j\omega t}}dt = \omega {e^{ - 2{\omega ^2}}}} $$    for any real value $$\omega $$ . If $$y\left( t \right) = \int\limits_{ - \infty }^t {g\left( \tau \right)} d\tau ,\,{\rm{then}}\,\int\limits_{ - \infty }^{ + \infty } {y\left( t \right)} dt$$       is. . . . . . . . Correct Answer -j

Related Questions

The input x(t) and output y(t) of a system are related as $$y\left( t \right) = \int\limits_{ - \infty }^t {x\left( \tau \right)} \cos \left( {3\tau } \right)d\tau .$$     The system is
Two monochromatic waves having frequencies $$\omega $$ and $$\omega + \Delta \omega \left( {\Delta \omega \ll \omega } \right)$$    and corresponding wavelengths $$\lambda $$ and $$\lambda - \Delta \lambda \left( {\Delta \lambda \ll \lambda } \right)$$    of same polarization, travelling along X-axis are superimposed on each other. The phase velocity and group velocity of the resultant wave are respectively given by