If $${x^2} + \frac{1}{{{x^2}}} = 98{\text{,}}$$   $$\left( {x > 0} \right){\text{,}}$$   then the value of $$x^3 + \frac{1}{{{x^3}}}$$  is?

If $${x^2} + \frac{1}{{{x^2}}} = 98{\text{,}}$$   $$\left( {x > 0} \right){\text{,}}$$   then the value of $$x^3 + \frac{1}{{{x^3}}}$$  is? Correct Answer 970

$$\eqalign{ & {x^2} + \frac{1}{{{x^2}}} = 98 \cr & \Rightarrow {x^2} + \frac{1}{{{x^2}}} + 2 = 100 \cr & \Rightarrow {\left( {x + \frac{1}{x}} \right)^2} = 100 \cr & \Rightarrow x + \frac{1}{x} = 10 \cr & {\text{Cubing}}\,{\text{both}}\,{\text{sides}} \cr & \Rightarrow {\text{ }}{x^3} + \frac{1}{{{x^3}}} = {10^3} - 3 \times 10 \cr & \Rightarrow {x^3} + \frac{1}{{{x^3}}} = 1000 - 3 \times 10 \cr & \Rightarrow {x^3} + \frac{1}{{{x^3}}} = 970 \cr} $$

Related Questions

\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaabckacaaIXaGaaGymaiaacYcacaqGGcGaaeiDaiaa % bIgacaqGLbGaaeOBaiaabckacaqGMbGaaeyAaiaab6gacaqGKbGaae % iOaiaabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabggacaqG % SbGaaeyDaiaabwgacaqGGcGaae4BaiaabAgacaqGGcWaaeWaa8aaba % WdbiaabIhacqGHsislcaaIXaGaaG4maaGaayjkaiaawMcaa8aadaah % aaWcbeqaa8qacaaI1aaaaOGaaeiOaiabgUcaRiaabckadaWcaaWdae % aapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaadIhacqGHsislcaaI % XaGaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aaaaa % aakiaacckacaGGUaaaaa!70B8! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = {\rm{\;}}11,{\rm{\;then\;find\;\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaabckacaaIXaGaaGymaiaacYcacaqGGcGaaeiDaiaa % bIgacaqGLbGaaeOBaiaabckacaqGMbGaaeyAaiaab6gacaqGKbGaae % iOaiaabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabggacaqG % SbGaaeyDaiaabwgacaqGGcGaae4BaiaabAgacaqGGcWaaeWaa8aaba % WdbiaabIhacqGHsislcaaIXaGaaG4maaGaayjkaiaawMcaa8aadaah % aaWcbeqaa8qacaaI1aaaaOGaaeiOaiabgUcaRiaabckadaWcaaWdae % aapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaadIhacqGHsislcaaI % XaGaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aaaaa % aakiaacckacaGGUaaaaa!70B8! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = {\rm{\;}}11,{\rm{\;then\;find\;\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaabckacaaIXaGaaGymaiaacYcacaqGGcGaaeiDaiaa % bIgacaqGLbGaaeOBaiaabckacaqGMbGaaeyAaiaab6gacaqGKbGaae % iOaiaabckacaqG0bGaaeiAaiaabwgacaqGGcGaaeODaiaabggacaqG % SbGaaeyDaiaabwgacaqGGcGaae4BaiaabAgacaqGGcWaaeWaa8aaba % WdbiaabIhacqGHsislcaaIXaGaaG4maaGaayjkaiaawMcaa8aadaah % aaWcbeqaa8qacaaI1aaaaOGaaeiOaiabgUcaRiaabckadaWcaaWdae % aapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaadIhacqGHsislcaaI % XaGaaGymaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI1aaaaa % aakiaacckacaGGUaaaaa!70B8! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = {\rm{\;}}11,{\rm{\;then\;find\;\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaqGjbGaaeOzaiaabckacaqG4bGaaeiOaiabgUcaRiaabckadaWc % aaWdaeaapeGaaGymaaWdaeaapeGaamiEaiabgkHiTiaaigdacaaIZa % aaaiabg2da9iaaigdacaaIXaGaaiilaiaabckacaqG0bGaaeiAaiaa % bwgacaqGUbGaaeiOaiaabAgacaqGPbGaaeOBaiaabsgacaqGGcGaae % iDaiaabIgacaqGLbGaaeiOaiaabAhacaqGHbGaaeiBaiaabwhacaqG % LbGaaeiOaiaab+gacaqGMbGaaeiOamaabmaapaqaa8qacaqG4bGaey % OeI0IaaGymaiaaiodaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGa % aGynaaaakiaabckacqGHRaWkcaqGGcWaaSaaa8aabaWdbiaaigdaa8 % aabaWdbmaabmaapaqaa8qacaWG4bGaeyOeI0IaaGymaiaaigdaaiaa % wIcacaGLPaaapaWaaWbaaSqabeaapeGaaGynaaaaaaGccaGGGcGaai % Olaaaa!6E72! {\rm{If\;x\;}} + {\rm{\;}}\frac{1}{{x - 13}} = 11,{\rm{\;then\;find\;the\;value\;of\;}}{\left( {{\rm{x}} - 13} \right)^5}{\rm{\;}} + {\rm{\;}}\frac{1}{{{{\left( {x - 11} \right)}^5}}}\;.\)If x + 1/(x - 13) = 11, then what will be the value of (x – 13)5 + 1/(x – 11)5?