If $$\left( {x + \frac{1}{x}} \right){\text{ = 2,}}$$ then $$\left( {x - \frac{1}{x}} \right)$$ is equal to = ?
If $$\left( {x + \frac{1}{x}} \right){\text{ = 2,}}$$ then $$\left( {x - \frac{1}{x}} \right)$$ is equal to = ? Correct Answer 0
$$\eqalign{ & \left( {x + \frac{1}{x}} \right){\text{ = 2}} \cr & \Rightarrow {\left( {x + \frac{1}{x}} \right)^2}{\text{ = }}{{\text{2}}^2} \cr & \Rightarrow {x^2} + \frac{1}{{{x^2}}} + 2 = 4 \cr & \Rightarrow {x^2} + \frac{1}{{{x^2}}} = 2 \cr & \Rightarrow {x^2} + \frac{1}{{{x^2}}} - 2.x.\frac{1}{x} \cr & \,\,\,\,\,\,\,\, = 2 - 2 = 0 \cr & \Rightarrow {\left( {x - \frac{1}{x}} \right)^2}{\text{ = 0}} \cr & \Rightarrow x - \frac{1}{x} = 0 \cr} $$
মোঃ আরিফুল ইসলাম
Feb 20, 2025