$$\left( {x + \frac{1}{x}} \right)$$ $$\left( {x - \frac{1}{x}} \right)$$ $$\left( {{x^2} + \frac{1}{{{x^2}}} - 1} \right)$$ $$\left( {{x^2} + \frac{1}{{{x^2}}} + 1} \right)$$ is equal to ?
$$\left( {x + \frac{1}{x}} \right)$$ $$\left( {x - \frac{1}{x}} \right)$$ $$\left( {{x^2} + \frac{1}{{{x^2}}} - 1} \right)$$ $$\left( {{x^2} + \frac{1}{{{x^2}}} + 1} \right)$$ is equal to ? Correct Answer $${x^6} - \frac{1}{{{x^6}}}$$
Given expression,$$\left$$ $$\left$$
$$\eqalign{ & = \left( {{x^3} + \frac{1}{{{x^3}}}} \right)\left( {{x^3} - \frac{1}{{{x^3}}}} \right) \cr & = {x^6} - \frac{1}{{{x^6}}} \cr} $$
মোঃ আরিফুল ইসলাম
Feb 20, 2025