If $$x = \sqrt 3 {\text{ + }}\sqrt 2 {\text{,}}$$ then the value of $${x^3} - \frac{1}{{{x^3}}}$$ is?
If $$x = \sqrt 3 {\text{ + }}\sqrt 2 {\text{,}}$$ then the value of $${x^3} - \frac{1}{{{x^3}}}$$ is? Correct Answer $$22\sqrt 2 $$
$$\eqalign{ & x = \sqrt 3 + \sqrt 2 \cr & \frac{1}{x} = \frac{1}{{\sqrt 3 + \sqrt 2 }} \times \frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }} \cr & \frac{1}{x} = \sqrt 3 - \sqrt 2 \cr & {x^3} - \frac{1}{{{x^3}}} \cr & = {\left^3} + 3 \times x \times \frac{1}{x}\left( {x - \frac{1}{x}} \right) \cr} $$$$ = {\left( {\sqrt 3 + \sqrt 2 - \sqrt 3 + \sqrt 2 } \right)^3} + $$ $$3\left( {\sqrt 3 + \sqrt 2 - \sqrt 3 + \sqrt 2 } \right)$$
$$\eqalign{ & = {\left( {2\sqrt 2 } \right)^3} + 3\left( {2\sqrt 2 } \right) \cr & = 16\sqrt 2 + 6\sqrt 2 \cr & = 22\sqrt 2 \cr} $$
মোঃ আরিফুল ইসলাম
Feb 20, 2025