The error in $${\left. {\frac{{\text{d}}}{{{\text{dx}}}}{\text{f}}\left( {\text{x}} \right)} \right|_{{\text{x}} = {{\text{x}}_0}}}$$ for a continuous function estimated with h = 0.03 using the central difference formula $${\left. {\frac{{\text{d}}}{{{\text{dx}}}}{\text{f}}\left( {\text{x}} \right)} \right|_{{\text{x}} = {{\text{x}}_0}}} = \frac{{{\text{f}}\left( {{{\text{x}}_0} + {\text{h}}} \right) - {\text{f}}\left( {{{\text{x}}_0} - {\text{h}}} \right)}}{{2{\text{h}}}},$$ is 2 × 10-3. The values of x0 and f(x0) are 19.78 and 500.01, respectively. The corresponding error in the central difference estimate for h = 0.02 is approximately
The error in $${\left. {\frac{{\text{d}}}{{{\text{dx}}}}{\text{f}}\left( {\text{x}} \right)} \right|_{{\text{x}} = {{\text{x}}_0}}}$$ for a continuous function estimated with h = 0.03 using the central difference formula $${\left. {\frac{{\text{d}}}{{{\text{dx}}}}{\text{f}}\left( {\text{x}} \right)} \right|_{{\text{x}} = {{\text{x}}_0}}} = \frac{{{\text{f}}\left( {{{\text{x}}_0} + {\text{h}}} \right) - {\text{f}}\left( {{{\text{x}}_0} - {\text{h}}} \right)}}{{2{\text{h}}}},$$ is 2 × 10-3. The values of x0 and f(x0) are 19.78 and 500.01, respectively. The corresponding error in the central difference estimate for h = 0.02 is approximately Correct Answer 9.0 × 10<sup>-4</sup>
মোঃ আরিফুল ইসলাম
Feb 20, 2025