Which of the following is TRUE? \({\rm{I}}.{\rm{\;}}\frac{1}{{\sqrt[3]{{12}}}} > \frac{1}{{\sqrt[4]{{29}}}} > \frac{1}{{\sqrt 5 }}\) \({\rm{II}}.\;\frac{1}{{\sqrt[4]{{29}}}} > \frac{1}{{\sqrt[3]{{12}}}} > \frac{1}{{\sqrt 5 }}\) \({\rm{III}}.\;\frac{1}{{\sqrt 5 }} > \frac{1}{{\sqrt[3]{{12}}}} > \frac{1}{{\sqrt[4]{{29}}}}\) \({\rm{IV}}.{\rm{\;}}\frac{1}{{\sqrt 5 }} > \frac{1}{{\sqrt[4]{{29}}}} > \frac{1}{{\sqrt[3]{{12}}}}\)
Which of the following is TRUE? \({\rm{I}}.{\rm{\;}}\frac{1}{{\sqrt[3]{{12}}}} > \frac{1}{{\sqrt[4]{{29}}}} > \frac{1}{{\sqrt 5 }}\) \({\rm{II}}.\;\frac{1}{{\sqrt[4]{{29}}}} > \frac{1}{{\sqrt[3]{{12}}}} > \frac{1}{{\sqrt 5 }}\) \({\rm{III}}.\;\frac{1}{{\sqrt 5 }} > \frac{1}{{\sqrt[3]{{12}}}} > \frac{1}{{\sqrt[4]{{29}}}}\) \({\rm{IV}}.{\rm{\;}}\frac{1}{{\sqrt 5 }} > \frac{1}{{\sqrt[4]{{29}}}} > \frac{1}{{\sqrt[3]{{12}}}}\) Correct Answer Only III
Calculation:
1/∛12, 1/4√29, and 1/√5
The powers are 3, 4 and 1
LCM of 3, 4, and 1 is 12
Taking the power of 12 on all three numbers, we get
⇒ (1/12)4, (1/29)3 and (1/5)6
⇒ (1/144)2, 1/(841 × 29), and (1/125)2
Now we can say that,
⇒ (1/125)2 > (1/144)2 > 1/(841 × 29)
⇒ 1/√5 > 1/∛12 > 1/4√29
∴ Option 3 is correct.