The simplified value of $$\frac{{\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right)\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right) - \left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)\left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)}}{{\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right) + \left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)}} = ?$$
The simplified value of $$\frac{{\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right)\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right) - \left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)\left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)}}{{\left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right) + \left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right)}} = ?$$ Correct Answer $$\frac{{200}}{{101}}$$
$$\eqalign{ & {\text{Given expression ,}} \cr & \frac{{{a^2} - {b^2}}}{{a + b}} = a - b \cr & = \left( {1 + \frac{1}{{1 + \frac{1}{{100}}}}} \right) - \left( {1 - \frac{1}{{1 + \frac{1}{{100}}}}} \right) \cr & = 2 \times \frac{1}{{\left( {101/100} \right)}} \cr & = 2 \times \frac{{100}}{{101}} \cr & = \frac{{200}}{{101}} \cr} $$
মোঃ আরিফুল ইসলাম
Feb 20, 2025