An aeroplane makes a complete half circle of 50 metres radius, towards left, when flying at 200 km per hr. The rotary engine and the propeller of the plane has a mass of 400 kg and a radius of gyration of 0.3 m. The engine rotates at 2400 r.p.m. clockwise when viewed from the rear. Find the gyroscopic couple on the aircraft.

An aeroplane makes a complete half circle of 50 metres radius, towards left, when flying at 200 km per hr. The rotary engine and the propeller of the plane has a mass of 400 kg and a radius of gyration of 0.3 m. The engine rotates at 2400 r.p.m. clockwise when viewed from the rear. Find the gyroscopic couple on the aircraft. Correct Answer 10.046 kN-m

Given : R = 50 m ; v = 200 km/hr = 55.6 m/s ; m = 400 kg ; k = 0.3 m ; N = 2400 r.p.m. or ω = 2π × 2400/60 = 251 rad/s We know that mass moment of inertia of the engine and the propeller, I = mk2 = 36 kg-m2 and angular velocity of precession, ωP = v/R = 55.6/50 = 1.11 rad/s We know that gyroscopic couple acting on the aircraft, C = I. ω. ωP = 36 × 251.4 × 1.11 = 100 46 N-m = 10.046 kN-m

Related Questions

If the propeller of an aeroplane rotates clockwise when viewed from the rear and the aeroplane takes a right turn, the gyroscopic effect will
The engine of an aeroplane rotates in clockwise direction when seen from the tail end and the aeroplane takes a turn to the left. The effect of gyroscopic couple on the aeroplane will be
The engine of an aeroplane rotates in clockwise direction when seen from the tail end and the aeroplane takes a turn to the left. The effect of the gyroscopic couple on the aeroplane will be