A basic op-amp circuit has a zener and rectifier diode connected in the feedback path. Calculate the maximum positive voltage. Where, zener voltage = 5.1 v and voltage drop across the forward biased zener = 0.7v?

A basic op-amp circuit has a zener and rectifier diode connected in the feedback path. Calculate the maximum positive voltage. Where, zener voltage = 5.1 v and voltage drop across the forward biased zener = 0.7v? Correct Answer VO = 7.1v

Initially, rectifier diode will be reverse biased and makes the op-amp to operate in open loop configuration. So, the output voltage is obtained till the rectifier diode is forward bias and zener goes into avalanche condition. Hence, the maximum positive output voltage VO= Vz +VD (VD –> voltage drop across rectifier diode). => VO= 5.1v+0.7 v= 5.8v.

Related Questions

A circuit is so formed such that the source-R-C-diode-switch are in series. Consider the initial voltage across the C to be zero. The diode is so connected that it is forward biased when the switch is closed. When the switch is closed,
A diode circuit is so arranged that when the switch is open it’s KVL gives Ri+ 1/C ∫i dt = 0 When the switch is closed, Ri+ 1/C ∫i dt = Vs Vs is the dc supply voltage. The diode is so connected that it is forward biased when switch is closed The circuit is mostly likely be a