In the circuit shown below, the switch is closed at t = 0, applied voltage is v (t) = 50cos (102t+π/4), resistance R = 10Ω and capacitance C = 1µF. The value of c in the complementary function of ‘i’ is?

In the circuit shown below, the switch is closed at t = 0, applied voltage is v (t) = 50cos (102t+π/4), resistance R = 10Ω and capacitance C = 1µF. The value of c in the complementary function of ‘i’ is? Correct Answer c = (3.53-4.99×10-3) cos⁡(π/4+89.94o)

At t = 0, the current flowing through the circuit is 3.53A. So, c = (3.53-4.99×10-3) cos⁡(π/4+89.94o).

Related Questions

In the circuit shown below, the switch is closed at t = 0, applied voltage is v (t) = 50cos (102t+π/4), resistance R = 10Ω and capacitance C = 1µF. The particular integral of the solution of ‘ip’ is?
In the circuit shown below, the switch is closed at t = 0, applied voltage is v (t) = 50cos (102t+π/4), resistance R = 10Ω and capacitance C = 1µF. The complete solution of ‘i’ is?
In the circuit shown below, the switch is closed at t = 0. Applied voltage is v (t) = 400cos (500t + π/4). Resistance R = 15Ω, inductance L = 0.2H and capacitance = 3 µF. Find the complementary current.