In the circuit shown below, the switch is closed at t = 0, applied voltage is v (t) = 50cos (102t+π/4), resistance R = 10Ω and capacitance C = 1µF. The complementary function of the solution of ‘i’ is?

In the circuit shown below, the switch is closed at t = 0, applied voltage is v (t) = 50cos (102t+π/4), resistance R = 10Ω and capacitance C = 1µF. The complementary function of the solution of ‘i’ is? Correct Answer ic = c exp (-t/10-5)

By applying Kirchhoff’s voltage law to the circuit, we have (D+1/10-5) )i=-500sin⁡(1000t+π/4). The complementary function is ic = c exp (-t/10-5).

Related Questions

In the circuit shown below, the switch is closed at t = 0, applied voltage is v (t) = 50cos (102t+π/4), resistance R = 10Ω and capacitance C = 1µF. The value of c in the complementary function of ‘i’ is?
In the circuit shown below, the switch is closed at t = 0, applied voltage is v (t) = 50cos (102t+π/4), resistance R = 10Ω and capacitance C = 1µF. The particular integral of the solution of ‘ip’ is?
In the circuit shown below, the switch is closed at t = 0, applied voltage is v (t) = 50cos (102t+π/4), resistance R = 10Ω and capacitance C = 1µF. The complete solution of ‘i’ is?
In the circuit shown below, the switch is closed at t = 0. Applied voltage is v (t) = 400cos (500t + π/4). Resistance R = 15Ω, inductance L = 0.2H and capacitance = 3 µF. Find the complementary current.