What is the value of ∫ ex(sin x - cos x) dx?

What is the value of ∫ ex(sin x - cos x) dx? Correct Answer - e<sup>x</sup> cos x + C

Concept:

  • Integration by Parts:

    ∫ f(x) g(x) dx = f(x) ∫ g(x) dx - ∫  dx.

  • ∫ sin x dx = - cos x + C

 

Calculation:

Let I = ​​∫ ex(sin x - cos x) dx.

⇒ I = ∫ ex sin x dx - ∫ ex cos x dx

⇒ I = ex ∫ sin x dx - ∫ dx - ∫ ex cos x dx

⇒ I = - ex cos x dx + ∫ ex cos x dx - ∫ ex cos x dx + C

⇒ I = - ex cos x + C

 

dx = ex f(x) + c

Let f(x) = -cos x

So, f'(x) = sin x

Now, I =  ∫ ex(sin x - cos x) dx

=  ​​∫ ex(- cos x + sin x) dx

∫ ex dx

=  ex f(x) + c

- ex cos x + C

Related Questions

Find the ∫∫x3 y3 sin⁡(x)sin⁡(y) dxdy. ]) b) (-x3 Cos(x) – 3x2 Sin(x) – 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3]) c) (-x3 Cos(x) + 3x2 Sin(x) + 6xCos(x)-6Sin(x))(-y3 Cos(y) + 3y2 Sin(y) + 6yCos(y) – 6Sin(y)) d) (–x3 Cos(x) + 6xCos(x) – 6Sin(x))(-y3 Cos(y))