If 3sec2θ + tanθ - 7 = 0, 0° < θ < 90°, then what is the value of \((\frac{2 sinθ +3 cosθ} {cosecθ +secθ})\) ?
If 3sec2θ + tanθ - 7 = 0, 0° < θ < 90°, then what is the value of \((\frac{2 sinθ +3 cosθ} {cosecθ +secθ})\) ? Correct Answer <span class="math-tex">\(\frac{5}{4}\)</span>
Given:
3sec2θ + tanθ - 7 = 0
Calculation:
3sec2θ + tanθ - 7 = 0
Put θ = 45°
⇒ 3 sec245° + tan 45° - 7
= (3 × 2) + 1 - 7
= 6 + 1 - 7
= 0
So, (2 sin θ + 3 cos θ)/(cosec θ + sec θ) = (2 sin 45° + 3 cos 45°)/(cosec 45° + sec 45°)
= /(√2 + √2)
= (2/√2 + 3/√2)/2√2
= (5/√2)/2√2
= 5/(√2 × 2√2)
= 5/4
∴ The value of (2 sin θ + 3 cos θ)/(cosec θ + sec θ) is 5/4
মোঃ আরিফুল ইসলাম
Feb 20, 2025