If secθ(cosθ + sinθ) = √2, then what is the value of 2sinθ/(cosθ - sinθ)?
If secθ(cosθ + sinθ) = √2, then what is the value of 2sinθ/(cosθ - sinθ)? Correct Answer √2
Simplifying the given equation,
⇒ 1 + tan θ = √2
⇒ tan θ = √2 - 1 ----(1)
Now, 2sinθ/(cosθ - sinθ)
Dividing by sinθ in both the numerator and denominator.
⇒ 2/(cotθ - 1)
Putting the value of cotθ from equation 1,
⇒ 2/
⇒ (2√2 - 2)/(1 - √2 + 1)
⇒ (2√2 - 2)/(2 - √2) = √2
∴ 2sinθ/(cosθ - sinθ) = √2
মোঃ আরিফুল ইসলাম
Feb 20, 2025