If 2 − cos2θ = 3 sinθ cosθ, where sinθ ≠ cosθ, the value of tanθ is.

If 2 − cos2θ = 3 sinθ cosθ, where sinθ ≠ cosθ, the value of tanθ is. Correct Answer 1/2

Calculation:

⇒ 2 − cos2θ = 3 sinθ cosθ

Dividing the expression by cos2θ,

⇒ 2 sec2θ – 1 = 3 tan θ

⇒ 2 (1 + tan2θ) – 1 = 3 tanθ

⇒ 2 tan2θ – 3 tanθ + 1 = 0

⇒ (2 tanθ – 1) (tanθ – 1) = 0

As given, sinθ ≠ cosθ

So, tanθ ≠ 1

⇒ 2tanθ = 1

⇒ tanθ = 1/2

∴ The value of tanθ is 1/2

Mistake Points

We can not put θ = 45° because sin θ ≠ cos θ.

Related Questions