In the expansion of (1 + x)n, what is the sum of even binomial coefficients?
In the expansion of (1 + x)n, what is the sum of even binomial coefficients? Correct Answer 2<sup>n - 1</sup>
Concept:
(1 + x)n = nC0 x0+ nC1 x1 + nC2 x2 + …. + nCn xn
Calculation:
To find: Sum of even binomial coefficients
That is,nC0 + nC2 + nC4 + nC6 + nC8 + ….
As we know, (1 + x)n = nC0 x0+ nC1 x1 + nC2 x2 + …. + nCn xn
Put x = 1, we get
⇒ (1 + 1)n = nC0 10+ nC1 11 + nC2 12 + …. + nCn 1n
⇒ nC0 10+ nC1 11 + nC2 12 + …. + nCn 1n = 2n
∴ nC0 + nC1 + nC2 + …. + nCn = 2n .... (1)
Put x = -1, we get
⇒ (1 - 1)n = nC0 (-1)0+ nC1 (-1)1 + nC2 (-1)2 + …. + nCn (-1)n
∴ nC0 - nC1 + nC2 - …. +(-1)n nCn = 0 .... (2)
Adding eqaution (1) + (2), we get
2 × (nC0 + nC2 + nC4 + nC6 + nC8 + ….) = 2n + 0
∴ nC0 + nC2 + nC4 + nC6 + nC8 + ….= 2n - 1